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Discrete Surfaces

A discrete surface is a collection of triangles equipped with a metric
of constant curvature. They are glued along geodesic edges. Vertices
can have cone-like singularities.
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Discrete Metrics

Geodesic edge lengths are called a discrete
Euclidean (K=0), hyperbolic (K=-1), or spherical (K=1) metric.
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Conformal Equivalence of Euclidean metrics

A discrete Euclidean metric with edge length lij is discretely

conformally equivalent to the discrete Euclidean metric l̃ij if the is a
function u : V → R such that for all edges
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Conformal Equivalence

A discrete Euclidean metric l and a discrete (hyperbolic, spherical)

metric l̃ are discretely conformally equivalent if
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De�nition

A discrete Riemann surface is an equivalence class of discretely
conformally equivalent metrics.

The Euclidean conformal invariant is the length cross-ratio de�ned on
edges. Two discrete Euclidean metrics are equivalent if their length
cross-ratios coincide.
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Discrete Uniformization

Uniformization Problem

Given a discrete Riemann surface, �nd a metric of constant curvature
without cone singularities.

As in the smooth case:

. g = 1 Euclidean

. g > 1 hyperbolic

. g = 0 spherical
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Variational Description
Metrics without cone-like singularities are critical points of Euclidean,
hyperbolic, and spherical functionals. Angles are calculated in the
respctive geometry.
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Realizations

. g = 1 - Euclidean plane and lattice Λ, E/Λ

. g > 1 - Hyperbolic plane and Fuchsian group G , H/G

. g = 0 - Sphere
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Discrete Realizations

Realizations of discrete metrics without cone-like singularities
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Examples

. Fuchsian uniformization of elliptic and hyperelliptic surfaces given
as two-sheeted cover of Ĉ

. Fuchsian uniformization of Schottky data

. Surfaces with boundary
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Elliptic and hyperelliptic surfaces

. Algebraic description

w 2 =

2g+2∏
i=1

(z − λi)

. Riemann surface is a two-sheeted cover of Ĉ with branch points λi

. Use spherical triangulation with 2g + 2 singularities at λi with cone
angle 4π.

. Find conformally equivalent hyperbolic metric without cone-like
singularities

. Realization as E/T or H/G
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Elliptic surface

branched cover

Riemann surface of genus 1 given by a branched cover of Ĉ
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Hyperelliptic surfaces

branched cover

Riemann surface of genus 2 given by a branched cover of Ĉ
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Theorem Hyperellipticity

Theorem

A Riemann surface is hyperelliptic if and only if the axes of the
hyperbolic motions that identify opposite sides of a fundamental
polygon meet in a point.
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Uniformization of Schottky data
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Uniformization of Schottky data
. Create triangulation of a fundamental domain with matching
vertices on circles

. �nd length-cross-ratios on circle edges

. pick a metric from the conformal class

. �nd conformally equivalent hyperbolic metric without cone-like
singularities
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Uniformization of Schottky data

Surface of genus 2 given as Ĉ/G and Fuchsian uniformization.
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Surfaces with boundary

Map boundary components to circles in E, H, or S.

sphere 3 holes

Genus 0 surface with 3 boundary components and uniformization
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Variational Description

If logarithmic edge lengths λ are variables of the functional then
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Hyperbolic surface with boundary

Genus 2 Riemann surface with one boundary component and Fuchsian
uniformization
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