

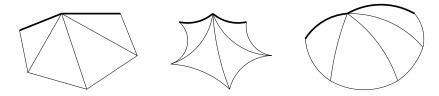
Uniformization of discrete Riemann surfaces

Stefan Sechelmann Institut für Mathematik, TU-Berlin

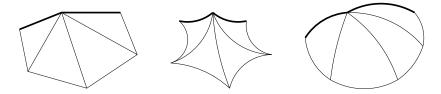
joint work with Alexander I. Bobenko and Boris Springborn

DFG Research Center MATHEON SFB/TR 109: Discretization in Geometry and Dynamics

A discrete surface is a collection of triangles equipped with a metric of constant curvature. They are glued along geodesic edges. Vertices can have cone-like singularities.



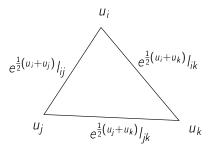
Geodesic edge lengths are called a discrete Euclidean (K=0), hyperbolic (K=-1), or spherical (K=1) metric.



☆ ▷GDConformal Equivalence of Euclidean metrics

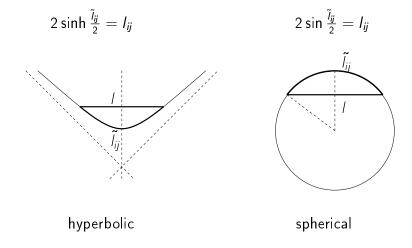
A discrete Euclidean metric with edge length I_{ij} is discretely conformally equivalent to the discrete Euclidean metric \tilde{I}_{ij} if the is a function $u: V \to \mathbb{R}$ such that for all edges

$$\tilde{l}_{ij} = e^{\frac{1}{2}(u_i + u_j)} l_{ij}$$



Conformal Equivalence

A discrete Euclidean metric I and a discrete (hyperbolic, spherical) metric \tilde{I} are discretely conformally equivalent if

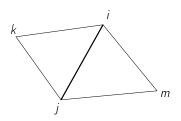


Definition

A *discrete Riemann surface* is an equivalence class of discretely conformally equivalent metrics.

The Euclidean conformal invariant is the length cross-ratio defined on edges. Two discrete Euclidean metrics are equivalent if their length cross-ratios coincide.

$$\operatorname{lcr}_{ij} = \frac{I_{ik}I_{jm}}{I_{mi}I_{kj}}$$



Uniformization Problem

Given a discrete Riemann surface, find a metric of constant curvature without cone singularities.

As in the smooth case:

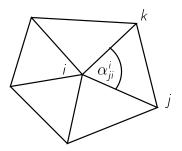
- $\triangleright g = 1 \rightsquigarrow \mathsf{Euclidean}$
- $\triangleright g > 1 \rightsquigarrow \mathsf{hyperbolic}$
- $\triangleright g = 0 \rightsquigarrow \text{spherical}$

Variational Description

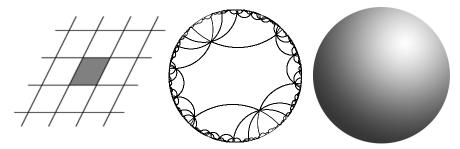
Metrics without cone-like singularities are critical points of Euclidean, hyperbolic, and spherical functionals. Angles are calculated in the respctive geometry.

$$\frac{\partial E}{\partial u_i} = 2\pi - \sum_{ijk \ni i} \alpha^i_{jk}$$

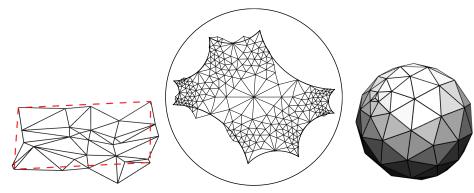
Optimize the corresponding functional to solve the uniformization problem.



- ho~g=1 Euclidean plane and lattice $\Lambda,~\mathbb{E}/\Lambda$
- $\triangleright~g>1$ Hyperbolic plane and Fuchsian group G , \mathbb{H}/G
- $\triangleright g = 0$ Sphere



Discrete Realizations



Realizations of discrete metrics without cone-like singularities

- $\triangleright\,$ Fuchsian uniformization of elliptic and hyperelliptic surfaces given as two-sheeted cover of $\hat{\mathbb{C}}$
- Fuchsian uniformization of Schottky data
- Surfaces with boundary

Algebraic description

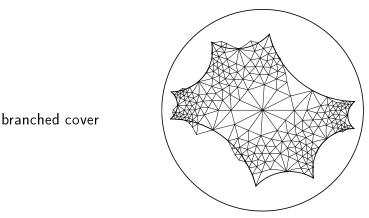
$$w^2 = \prod_{i=1}^{2g+2} (z - \lambda_i)$$

- \triangleright Riemann surface is a two-sheeted cover of $\hat{\mathbb{C}}$ with branch points λ_i
- ▷ Use spherical triangulation with 2g + 2 singularities at λ_i with cone angle 4π .
- Find conformally equivalent hyperbolic metric without cone-like singularities
- \triangleright Realization as \mathbb{E}/T or \mathbb{H}/G



Riemann surface of genus 1 given by a branched cover of $\hat{\mathbb{C}}$

Hyperelliptic surfaces

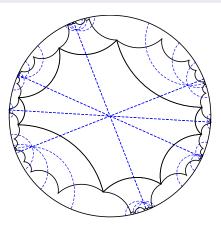


Riemann surface of genus 2 given by a branched cover of $\hat{\mathbb{C}}$

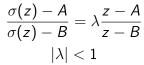
Theorem Hyperellipticity

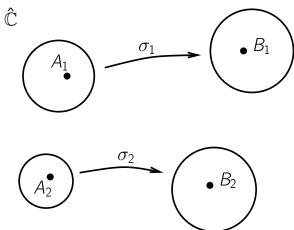
Theorem

A Riemann surface is hyperelliptic if and only if the axes of the hyperbolic motions that identify opposite sides of a fundamental polygon meet in a point.

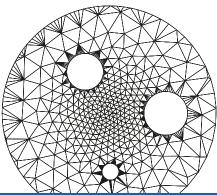


Uniformization of Schottky data

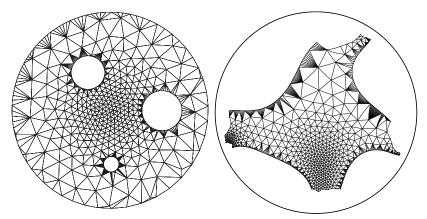




- Create triangulation of a fundamental domain with matching vertices on circles
- ▷ find length-cross-ratios on circle edges
- pick a metric from the conformal class
- find conformally equivalent hyperbolic metric without cone-like singularities



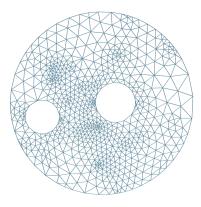
Uniformization of Schottky data



Surface of genus 2 given as $\hat{\mathbb{C}}/G$ and Fuchsian uniformization.

Surfaces with boundary

Map boundary components to circles in \mathbb{E} , \mathbb{H} , or \mathbb{S} .



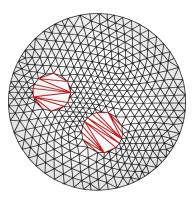
sphere 3 holes

Genus 0 surface with 3 boundary components and uniformization

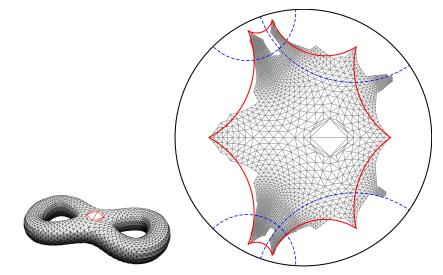
Variational Description

If logarithmic edge lengths λ are variables of the functional then

$$\frac{\partial E}{\partial \lambda_{ij}} = \pi - \alpha_{ij}^{k} - \alpha_{ji}^{m}$$



Hyperbolic surface with boundary



Genus 2 Riemann surface with one boundary component and Fuchsian uniformization