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1 Introduction

The notion of discrete conformal equivalence for polyhedral surfaces is based on a
simple definition: Two polyhedral surfaces are discretely conformally equivalent if
the edge lengths are related by scale factors assigned to the vertices. It leads to a
surprisingly rich theory [17, 4, 9, 10]. In this article, we investigate different aspects
of this theory.

We extend the notion of discrete conformal equivalence from triangulated sur-
faces to polyhedral surfaces with faces that are inscribed in circles. The basic defi-
nitions and their immediate consequences are discussed in Section 2.

In Section 3, we generalize a variational principle for discretely conformally
equivalent triangulations [4] to the polyhedral setting. This variational principle is
the main tool for all our numerical calculations. It is also the basis for our uniqueness
proof for discrete conformal mapping problems (Theorem 3.9).

Section 4 is concerned with the special case of quadrilateral meshes. We discuss
the emergence of orthogonal circle patterns, a peculiar necessary condition for the
existence of solutions for boundary angle problems, and we extend the method of
constructing discrete Riemann maps from triangulations to quadrangulations.

In Section 5, we briefly discuss discrete conformal maps form multiply connected
domains to circle domains, and special cases in which we can map to slit domains.

Section 6 deals with conformal mappings onto the sphere. We generalize the
method for triangulations to quadrangulations, and we explain how the spherical
version of the variational principle can in some cases be used for numerical calcu-
lations although the corresponding functional is not convex.

Section 7 is concerned with the uniformization of tori, i.e., the representation of
Riemann surfaces as a quotient space of the complex plane modulo a period lattice.
We consider Riemann surfaces represented as immersed surfaces in R3, and as ellip-
tic curves. We conduct numerical experiments to test the conjectured convergence
of discrete conformal maps. We consider the difference between the true modulus
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Fig. 1 Uniformization of compact Riemann surfaces. The uniformization of spheres is treated in
Section 6. Tori are covered in Section 7, and Section 8 is concerned with surfaces of higher genus.
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of an elliptic curve (which can be calculated using hypergeometric functions) and
the modulus determined by discrete uniformization, and we estimate the asymptotic
dependence of this error on the number of vertices.

In Section 8, we consider the Fuchsian uniformization of Riemann surfaces rep-
resented in different forms. We consider immersed surfaces in R3 (and S3), hy-
perelliptic curves, and Riemann surfaces represented as a quotient of Ĉ modulo a
classical Schottky group. That is, we convert from Schottky uniformization to Fuch-
sian uniformization. The Section ends with two extended examples demonstrating,
among other things, a remarkable geometric characterization of hyperelliptic sur-
faces due to Schmutz Schaller.

2 Discrete conformal equivalence of cyclic polyhedral surfaces

2.1 Cyclic polyhedral surfaces

A euclidean polyhedral surface is a surface obtained from gluing euclidean poly-
gons along their edges. (A surface is a connected two-dimensional manifold, pos-
sibly with boundary.) In other words, a euclidean polyhedral surface is a surface
equipped with, first, an intrinsic metric which is flat except at isolated points where
it has cone-like singularities, and, second, the structure of a CW complex with
geodesic edges. The set of vertices contains all cone-like singularities. If the sur-
face has a boundary, the boundary is polygonal and the set of vertices contains all
corners of the boundary.

Hyperbolic polyhedral surfaces and spherical polyhedral surfaces are defined
analogously. They are glued from polygons in the hyperbolic and elliptic planes,
respectively. Their metric is locally hyperbolic or spherical, except at cone-like sin-
gularities.

We will only be concerned with polyhedral surfaces whose faces are all cyclic,
i.e., inscribed in circles. We call them cyclic polyhedral surfaces. More precisely,
we require the polygons to be cyclic before they are glued together. It is not required
that the circumcircles persist after gluing; they may be disturbed by cone-like sin-
gularities. A polygon in the hyperbolic plane is considered cyclic if it is inscribed
in a curve of constant curvature. This may be a circle (the locus of points at con-
stant distance from its center), a horocycle, or a curve at constant distance from a
geodesic.

A triangulated surface, or triangulation for short, is a polyhedral surface all of
whose faces are triangles. All triangulations are cyclic.
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2.2 Notation

We will denote the sets of vertices, edges, and faces of a CW complex Σ by VΣ , EΣ ,
and FΣ , and we will often omit the subscript when there is no danger of confusion.
For notational convenience, we require all CW complexes to be strongly regular.
This means that we require that faces are not glued to themselves along edges or
at vertices, that two faces are not glued together along more than one edge or one
vertex, and that edges have distinct end-points and two edges have at most one
endpoint in common. This allows us to label edges and faces by their vertices. We
will write ij ∈ E for the edge with vertices i, j ∈ V and ijkl ∈ F for the face with
vertices i, j,k, l ∈ V . We will always list the vertices of a face in the correct cyclic
order, so that for example the face ijkl has edges ij, jk, kl, and li. The only reason for
restricting our discussion to strongly regular CW complexes is to be able to use this
simple notation. Everything we discuss applies also to general CW complexes.

2.3 Discrete metrics

The discrete metric of a euclidean (or hyperbolic or spherical) cyclic polyhedral
surface Σ is the function ` : EΣ →R>0 that assigns to each edge ij∈ EΣ its length `ij.
It satisfies the polygon inequalities (one side is shorter than the sum of the others):

−`i1i2 + `i2i3+ . . .+ `in−1in > 0
`i1i2 − `i2i3+ . . .+ `in−1in > 0

...
`i1i2 + `i2i3+ . . .− `in−1in > 0

 for all i1i2 . . . in ∈ FΣ (1)

In the case of spherical polyhedral surfaces, we also require that

`i1i2 + `i2i3 + . . .+ `in−1in < 2π. (2)

The polygon inequalities (1) are necessary and sufficient for the existence of a
unique cyclic euclidean polygon and a unique cyclic hyperbolic polygon with the
given edge lengths. Together with inequality (2) they are necessary and sufficient
for the existence of a unique cyclic spherical polygon. For a new proof of these ele-
mentary geometric facts, see [14]. Thus, a discrete metric determines the geometry
of a cyclic polyhedral surface:

Proposition and Definition 2.1. If Σ is a surface with the structure of a CW com-
plex and a function ` : EΣ → R>0 satisfies the polygon inequalities (1), then there
is a unique euclidean cyclic polyhedral surface and also a unique hyperbolic cyclic
polyhedral surface with CW complex Σ and discrete metric `. If ` also satisfies
the inequalities (2), then there is a unique spherical cyclic polyhedral surface with
CW complex Σ and discrete metric `.
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We will denote the euclidean, hyperbolic, and spherical polyhedral surface with
CW complex Σ and discrete metric ` by (Σ , `)euc, (Σ , `)hyp, and (Σ , `)sph, respec-
tively.

2.4 Discrete conformal equivalence

We extend the definition of discrete conformal equivalence from triangulations [17,
4] to cyclic polyhedral surfaces in a straightforward way (Definition 2.2). While
some aspects of the theory carry over to the more general setting (e.g., Möbius
invariance, Proposition 2.5), others do not, like the characterization of discretely
conformally equivalent triangulations in terms of length cross-ratios (Section 2.5).
We will discuss similar characterizations for polyhedral surfaces with 2-colorable
vertices and the particular case of quadrilateral faces in Sections 2.7 and 2.8.

We define discrete conformal equivalence only for polyhedral surfaces that are
combinatorially equivalent (see Remark 2.4). Thus, we may assume that the surfaces
share the same CW complex Σ equipped with different metrics `, ˜̀.

Definition 2.2. Discrete conformal equivalence is an equivalence relation on the set
of cyclic polyhedral surfaces defined as follows:
• Two euclidean cyclic polyhedral surfaces (Σ , `)euc and (Σ , ˜̀)euc are discretely con-

formally equivalent if there exists a function u : VΣ → R such that

˜̀ij = e
1
2 (ui+u j)`ij. (3)

• Two hyperbolic cyclic polyhedral surfaces (Σ , `)hyp and (Σ , ˜̀)hyp are discretely
conformally equivalent if there exists a function u : VΣ → R such that

sinh
( ˜̀ij

2

)
= e

1
2 (ui+u j) sinh

(`ij

2

)
. (4)

• Two spherical cyclic polyhedral surfaces (Σ , `)sph and (Σ , ˜̀)sph are discretely con-
formally equivalent if there exists a function u : VΣ → R such that

sin
( ˜̀ij

2

)
= e

1
2 (ui+u j) sin

(`ij

2

)
. (5)

We will also consider mixed versions:
• A euclidean cyclic polyhedral surface (Σ , `)euc and a hyperbolic cyclic polyhedral

surface (Σ , ˜̀)hyp are discretely conformally equivalent if

sinh
( ˜̀ij

2

)
= e

1
2 (ui+u j)`ij. (6)

• A euclidean cyclic polyhedral surface (Σ , `)euc and a spherical cyclic polyhedral
surface (Σ , ˜̀)sph are discretely conformally equivalent if
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sin
( ˜̀ij

2

)
= e

1
2 (ui+u j)`ij. (7)

• A hyperbolic cyclic polyhedral surface (Σ , `)hyp and a spherical cyclic polyhedral
surface (Σ , ˜̀)sph are discretely conformally equivalent if

sin
( ˜̀ij

2

)
= e

1
2 (ui+u j) sinh

(`ij

2

)
(8)

Remark 2.3. Note that relation (5) for spherical edge lengths is equivalent to rela-
tion (3) for the euclidean lengths of the chords in the ambient R3 of the sphere (see
Figure 2, left). Likewise, relation (4) for hyperbolic edge lengths is equivalent to (3)

2sin `
2

`

`

2sinh `
2

Fig. 2 Spherical and hyperbolic chords.

lcri jk l

`l j` jk

j

i

`il`ki

Fig. 3 Length cross-ratio

for the euclidean lengths of the chords in the ambient R2,1 of the hyperboloid model
of the hyperbolic plane (see Figure 2, right).

Remark 2.4. For triangulations, the definition of discrete conformal equivalence has
been extended to meshes that are not combinatorially equivalent [4, Definition 5.1.4]
[9, 10]. It is not clear whether or how the following definitions for cyclic polyhedral
surfaces can be extended to combinatorially inequivalent CW complexes.

The discrete conformal class of a cyclic polyhedral surface embedded in n-
dimensional euclidean space is invariant under Möbius transformations of the am-
bient space:

Proposition 2.5 (Möbius invariance). Suppose P and P̃ are two combinatorially
equivalent euclidean cyclic polyhedral surfaces embedded in Rn (with straight
edges and faces), and suppose there is a Möbius transformation of Rn ∪{∞} that
maps the vertices of P to the corresponding vertices of P̃. Then P and P̃ are dis-
cretely conformally equivalent.

Note that only vertices are related by the Möbius transformation, not edges and
faces, which remain straight. The simple proof for the case of triangulations [4]
carries over without change.
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2.5 Triangulations: Characterization by length cross-ratios

For euclidean triangulations, there is an alternative characterization of conformal
equivalence in terms of length cross-ratios [4]. We review the basic facts in this
section.

For two adjacent triangles ijk∈F and jil∈F (see Figure 3), the length cross-ratio
of the common interior edge ij ∈ E is defined as

lcrij =
`il`jk

`lj`ki
. (9)

(If the two triangles are embedded in the complex plane, this is just the modulus of
the complex cross-ratio of the four vertices.) This definition of length cross-ratios
implicitly assumes that an orientation has been chosen on the surface. For non-
orientable surfaces, the length cross-ratio is well defined on the oriented double
cover.

The product of length cross-ratios around an interior vertex i ∈ V is 1, because
all lengths cancel:

∏
ij3i

lcrij = 1. (10)

Proposition 2.6. Two euclidean triangulations (Σ , `)euc and (Σ , ˜̀)euc are discretely
conformally equivalent if and only if for each interior edge ij ∈ E int

Σ
, the induced

length cross-ratios agree.

Remark 2.7. Analogous statements hold for spherical and hyperbolic triangulations.
Equation (9) has to be modified by replacing ` with sin `

2 or sinh `
2 , respectively

(compare Remark 2.3).

2.6 Triangulations: Reconstructing lengths from length
cross-ratios

To deal with Riemann surfaces that are given in terms of Schottky data (Section 8.2)
we will need to reconstruct a function ` : EΣ →R>0 satisfying (9) from given length
cross-ratios. (It is not required that the function ` satisfies the triangle inequalities.)
To this end, we define auxiliary quantities ci

jk attached to the angles of the triangu-
lation. The value at vertex i of the triangle ijk ∈ F is defined as

ci
jk =

`jk

`ij`ki
. (11)

Then (9) is equivalent to

lcrij =
ci

jk

ci
lj
. (12)
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Now, given a function lcr : E int→ R>0 defined on the set of interior edges E int and
satisfying the product condition (10) around interior vertices, one can find parame-
ters ci

jk satisfying (11) by choosing one value at each vertex and then successively
multiplying length cross-ratios. The corresponding function ` is then determined by

`ij =
1√

ci
jkc j

ki

=
1√
ci

ljc
j
il

. (13)

2.7 Bipartite graphs: Characterization by length multi-ratios

A different characterization of discrete conformal equivalence in terms of length
multi-ratios holds if the 1-skeleton of the polyhedral surface is bipartite, i.e., if the
vertices can be colored with two colors so that no two neighboring vertices share
the same color.

Proposition 2.8. (i) If two combinatorially equivalent euclidean cyclic polyhedral
surfaces (Σ , `)euc and (Σ , ˜̀)euc with discrete metrics ` and ˜̀ are discretely confor-
mally equivalent, then the length multi-ratios for even cycles

i1i2, i2i3, . . . , i2ni1

are equal:
`i1i2`i3i4 · · ·`i2n−1i2n

`i2i3`i4i5 · · ·`i2ni1
=

˜̀i1i2
˜̀i3i4 · · · ˜̀i2n−1i2n

˜̀i2i3
˜̀i4i5 · · · ˜̀i2ni1

. (14)

(ii) If the 1-skeleton of Σ is bipartite, i.e., if all cycles are even, then this con-
dition is also sufficient: If the length multi-ratios are equal for all cycles, then the
polyhedral surfaces are discretely conformally equivalent.

Proof. (i) This is obvious, because all scale factors eu cancel. (ii) It is easy to see that
equations (3) can be solved for the scale factors eu/2 if the length multi-ratios are
equal. Note that the scale factors are not uniquely determined: they can be multiplied
by λ and 1/λ on the two vertex color classes, respectively. To find a particular
solution, one can fix the value of eu/2 at one vertex, and find the other values by
alternatingly dividing and multiplying by ˜̀/` along paths. The equality of length
multi-ratios implies that the obtained values do not depend on the path. ut

Remark 2.9. If a polyhedral surface is simply connected, then its 1-skeleton is bipar-
tite if and only if all faces are even polygons. If a polyhedral surface is not simply
connected, then having even faces is only a necessary condition for being bipartite.

A polyhedral surface with bipartite 1-skeleton has even faces. If a polyhedral
surface has even faces and is simply connected, then its 1-skeleton is bipartite, and
the face boundaries generate all cycles. Thus, Proposition 2.8 implies the following
corollary.
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Corollary 2.10. Two simply connected combinatorially equivalent euclidean cyclic
polyhedral surfaces with even faces and with discrete metrics ` and ˜̀ are discretely
conformally equivalent if and only if the multi-ratio condition (14) holds for every
face boundary cycle.

Remark 2.11. Analogous statements hold for spherical and hyperbolic cyclic poly-
hedral surfaces. In the multi-ratio condition, one has to replace non-euclidean
lengths ` with sin `

2 or sinh `
2 , respectively (compare Remark 2.3).

2.8 Quadrangulations: the cross-ratio system on quad-graphs

The case of cyclic quadrilateral faces is somewhat special (and we will return to it
in Section 4), because equal length cross-ratio implies equal complex cross-ratio:

Proposition 2.12. If two euclidean polyhedral surfaces with cyclic quadrilateral
faces are discretely conformally equivalent, then corresponding faces ijkl ∈ F have
the same complex cross-ratio (when embedded in the complex plane):

(zi− z j)(zk− zl)

(z j− zk)(zl− zi)
=

(z̃i− z̃ j)(z̃k− z̃l)

(z̃ j− z̃k)(z̃l− z̃i)

Proof. This follows immediately from Proposition 2.8: The length multi-ratio of a
quadrilateral is the modulus of the complex cross-ratio. If the (embedded) quadri-
laterals are cyclic, then their complex cross-ratios are real and negative, so their
arguments are also equal. ut

For planar polyhedral surfaces, i.e., for quadrangulations in the complex plane,
Proposition 2.12 connects discrete conformality with the cross-ratio system on
quad-graphs. A quad-graph in the most general sense is simply an abstract CW
cell decomposition of a surface with quadrilateral faces. Often, more conditions are
added to the definition as needed. Here, we will require that the surface is oriented
and that the vertices are bicolored black and white. For simplicity, we will also as-
sume that the CW complex is strongly regular (see Section 2.2). The cross-ratio
system on a quad-graph Σ imposes equations (15) on variables zi that are attached
to the vertices i ∈VΣ . There is one equation per face ijkl ∈ FΣ :

(zi− z j)(zk− zl)

(z j− zk)(zl− zi)
= Qijkl, (15)

where we assume that i is a black vertex and the boundary vertices ijkl are listed in
the positive cyclic order. (Here we need the orientation). On the right hand side of
the equation, Q : FΣ →C\{0,1} is a given function. In particular, it is required that
the values zi,z j,zk,zl on a face are distinct.

By Proposition 2.12, two discretely conformally equivalent planar quadrangula-
tions correspond to two solutions of the cross-ratio system on the same quad-graph
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with the same cross-ratios Q. The following proposition says that in the simply con-
nected case, one can find complex factors w on the vertices whose absolute values
|w|= eu/2 govern the length change of edges according to (3), and whose arguments
govern the rotation of edges. Note that (3) is obtained from (16) by taking absolute
values.

Proposition 2.13. Let Σ be a simply connected quad-graph. Two functions z, z̃ :
VΣ → C are solutions of the cross-ratio system on Σ with the same cross-ratios
Q if and only if there is a function w : VΣ → C such that for all edges ij ∈ EΣ

z̃ j− z̃i = wiw j(z j− zi). (16)

Proof. As in the proof of Proposition 2.8, it is easy to see that the system of equa-
tions (16) is solvable for w if and only if the complex multi-ratios for even cycles
are equal. Because Σ is simply connected, this is the case if and only if the complex
cross-ratios of corresponding faces are equal. ut

Remark 2.14. The cross-ratio system on quad-graphs (15) is an integrable system (in
the sense of 3D consistency [5, 6]) if the cross-ratios Q “factor”, i.e., if there exists
a function on the set of edges, a : EΣ →C, that satisfies the following conditions for
each quadrilateral ijkl ∈ F :

(i) It takes the same value on opposite edges,

aij = akl, ajk = ali. (17)

(ii)
Qijkl =

aij

ajk
. (18)

In Adler, Bobenko & Suris’ classification of integrable equations on quad-graphs [2],
the integrable cross-ratio system is called (Q1)δ=0. It is also known as the discrete
Schwarzian Korteweg–de Vries (dSKdV) equation, especially when it is considered
on the regular square lattice [21] with constant cross-ratios.

If the cross-ratios Q have unit modulus, the cross-ratio system on quad-graphs is
connected with circle patterns with prescribed intersection angles [5, 6].

Remark 2.15. The system of equations (16) is also connected with an integrable
system on quad-graphs. Let bij = z j − zi, so b is a function on the oriented edges
with bij =−bji. Let us also assume that the quad-graph Σ is simply connected. Then
the system (16) defines a function z : V →C (uniquely up to an additive constant) if
and only if the complex scale factors w : VΣ → C satisfy, for each face ijkl ∈ F the
closure condition

bijwiw j +bjkw jwk +bklwkwl +bliwlwi = 0. (19)

This system for w is integrable if, for each face ijkl ∈ F ,

bij +bkl = 0 and bjk +bli = 0.
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In this case, (19) is known as discrete modified Korteweg–de Vries (dmKdV) equa-
tion [21], or as Hirota equation [5, 6].

3 Variational principles for discrete conformal maps

3.1 Discrete conformal mapping problems

We will consider the following discrete conformal mapping problems. (The notation
(Σ , `)g was introduced in Definition 2.1.)

Problem 3.1 (prescribed angle sums). Given
• A euclidean, spherical, or hyperbolic cyclic polyhedral surface (Σ , `)g, where g ∈
{euc,hyp,sph},
• a desired total angle Θi > 0 for each vertex i ∈VΣ ,
• a choice of geometry g̃ ∈ {euc,hyp,sph},
find a discretely conformally equivalent cyclic polyhedral surface (Σ , ˜̀)g̃ of geom-
etry g̃ that has the desired total angles Θ around vertices.

For interior vertices, Θ prescribes a desired cone angle. For boundary vertices,
Θ prescribes a desired interior angle of the polygonal boundary. If Θi = 2π for all
interior vertices i, then Problem 3.1 asks for a flat metric in the discrete conformal
class, with prescribed boundary angles if the surface has a boundary.

More generally, we will consider the following problem, where the logarithmic
scale factors u (see Definition 2.2) are fixed at some vertices and desired angle sums
Θ are prescribed at the other vertices. The problems to find discrete Riemann maps
(Section 4.2) and maps onto the sphere (Section 6.1) can be reduced to this mapping
problem with some fixed scale factors.

Problem 3.2 (prescribed scale factors and angle sums). Given
• A euclidean, spherical, or hyperbolic cyclic polyhedral surface (Σ , `)g, where g ∈
{euc,hyp,sph},
• a partition VΣ =V0∪̇V1
• a prescribed angle Θi > 0 for each vertex i ∈V1,
• a prescribed logarithmic scale factor ui ∈ R for each vertex i ∈V0,
• a choice of geometry g̃ ∈ {euc,hyp,sph},
find a discretely conformally equivalent cyclic polyhedral surface (Σ , ˜̀)g̃ of geom-
etry g̃ that has the desired total angles Θ around vertices in V1 and the fixed scale
factors u at vertices in V0.

Note that for V0 = /0, V1 =V , Problem 3.2 reduces to Problem 3.1.
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3.2 Analytic formulation of the mapping problems

We rephrase the mapping Problem 3.2 analytically as Problem 3.4. The sides of a
cyclic polygon determine its angles, but practical explicit equations for the angles
as functions of the sides exist only for triangles, e.g., (21). For this reason it makes
sense to triangulate the polyhedral surface. For the angles in a triangulation, we use
the notation shown in Figure 4. In triangle ijk, we denote the angle at vertex i by α i

jk.

Fig. 4 Notation of lengths and
angles in a triangle ijk ∈ F .

We denote by β i
ij the angle between the circumcircle and the edge jk. The angles α

and β are related by
α

i
jk +β

j
ki +β

k
ij = π,

so betas determine alphas and vice versa:

2β
i
jk = π +α

i
jk−α

j
ki−α

k
ij, . . . (20)

For euclidean triangles,

α
i
jk +α

j
ki +α

k
ij = π, β

i
jk = α

i
jk.

The half-angle equation can be used to express the angles as functions of lengths:

tan

(
α i

jk

2

)
=



(
(−`ij + `jk + `ki)(`ij + `jk− `ki)

(`ij− `jk + `ki)(`ij + `jk + `ki)

) 1
2

(euc)(
sinh

(
(`ij− `jk + `ki)/2

)
sinh

(
(`ij + `jk− `ki)/2

)
sinh

(
(−`ij + `jk + `ki)/2

)
sinh

(
(`ij + `jk + `ki)/2

)) 1
2

(hyp)(
sin
(
(`ij− `jk + `ki)/2

)
sin
(
(`ij + `jk− `ki)/2

)
sin
(
(−`ij + `jk + `ki)/2

)
sin
(
(`ij + `jk + `ki)/2

)) 1
2

(sph)

(21)

Lemma 3.3 (analytic formulation of Problem 3.2). Let
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• the polyhedral surface (Σ , `)g,
• the partition V0∪̇V1,
• Θi for i ∈V1,
• ui for i ∈V0,
• the geometry g̃ ∈ {euc,hyp,sph}
be given as in Problem 3.2. Let ∆ be an abstract triangulation obtained by adding
non-crossing diagonals to non-triangular faces of Σ . (So VΣ = V∆ , EΣ ⊆ E∆ , and
the set of added diagonals is E∆ \EΣ .) For ij ∈ EΣ , define λij by

λij =


2log`ij if g = euc

2logsinh `ij
2 if g = hyp

2logsin `ij
2 if g = sph

(22)

Then solving Problem 3.2 is equivalent to solving Problem 3.4 with E0 = EΣ and
E1 = E∆ \EΣ .

Problem 3.4. Given
• an abstract triangulation ∆ ,
• a partition V∆ =V0∪̇V1,
• ui ∈ R for i ∈V0
• Θi ∈ R>0 for i ∈V1,
• a partition E∆ = E0∪̇E1,
• λij for ij ∈ E0,
• g̃ ∈ {euc,hyp,sph},
find ui ∈ R for i ∈V1 and λij for ij ∈ E1 such that

˜̀ : E∆ → R>0

defined by
λ̃ij = ui +u j +λij, (23)

and

˜̀ij =


e

1
2 λ̃ij if g̃ = euc

2arsinhe
1
2 λ̃ij if g̃ = hyp

2arcsine
1
2 λ̃ij if g̃ = sph

(24)

satisfies for all ijk ∈ F∆ the triangle inequalities

˜̀ij < ˜̀jk + ˜̀ki, ˜̀jk < ˜̀ki + ˜̀ij, ˜̀ki < ˜̀ij + ˜̀jk, (25)

and for g̃ = sph also
˜̀ij + ˜̀jk + ˜̀ki < 2π, (26)

and such that
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∑
jk:ijk∈F∆

α̃
i
jk =Θi for all i ∈V1, (27)

β̃
k
ij + β̃

l
ji = π for all ij ∈ E1, (28)

where α̃ and β̃ are defined by (21) and (20) (with α , β , ` replaced by α̃ , β̃ , ˜̀). Note
that for g̃ = sph it is also required that λ̃ < 0 for ˜̀ to be well-defined.

Proof (of Lemma 3.3). Note that (27) says that the angle sums at vertices in V1 have
the prescribed values, and (28) says that neighboring triangles of (∆ , ˜̀)g̃ belonging
to the same face of Σ share the same circumcircle. So deleting the edges in E∆ \EΣ ,
one obtains a cyclic polyhedral surface (Σ , ˜̀|EΣ

)g̃. ut

3.3 Variational principles

Definition 3.5. For an abstract triangulation ∆ and a function Θ ∈ RV∆

>0, define the
three functions

Eeuc
∆ ,Θ ,Ehyp

∆ ,Θ ,Esph
∆ ,Θ : RE∆ ×RV∆ −→ R,

(λ ,u) 7−→ E g̃
∆ ,Θ (λ ,u)

by

E g̃
∆ ,Θ (λ ,u) = ∑

ijk∈F∆

(
f g̃(λ̃ij, λ̃jk, λ̃ki)−

π

2
(λ̃jk + λ̃ki + λ̃ij)

)
+ ∑

i∈V∆

Θiui, (29)

where g̃ ∈ {euc,hyp,sph}, λ̃ is defined as function of λ and u by (23), and the
functions f euc, f hyp, f sph are defined in Section 3.4.

We will often omit the subscripts and write simply Eeuc,Ehyp,Esph when this is
unlikely to cause confusion.

Definition 3.6. We define the feasible regions of the functions E g̃
∆ ,Θ as the following

open subsets of their domains:
• The feasible region of Eeuc and Ehyp is the set of all (λ ,u) ∈ RE∆ ×RV∆ such that

˜̀∈ RE
>0 defined by (23) and (24) satisfies the triangle inequalities (25)

• The feasible region of Esph is the set of all (λ ,u)∈RE∆ ×RV∆ such that λ̃ defined
by (23) is negative, and ˜̀, which is then well-defined by (24), satisfies the triangle
inequalities (25) and the inequalities (26).

Theorem 3.7 (Variational principles). Every solution (Σ , ˜̀)g̃ of Problem 3.2 cor-
responds via (23) and (24) to a critical point (λ ,u) ∈ RE∆ ×RV∆ of the function
E g̃

∆ ,Θ under the constraints that λij and ui are fixed for ij ∈ E0 and i ∈ V0, respec-
tively. (The triangulation ∆ , and E0 = EΣ and E1 = E∆ \EΣ are as in Lemma 3.3,
and the given function Θ is extended from V1 to V by arbitrary values on V0.)



Discrete conformal maps 15

Conversely, if (λ ,u) ∈ RE∆ ×RV∆ is a critical point of the function E g̃
∆ ,Θ under

the same constraints, and if (λ ,u) is contained in the feasible region of E g̃
∆ ,Θ , then

(Σ , ˜̀)g̃ defined by (23) and (24) is a solution of Problem 3.2.

Proof. This follows from the analytic formulation of Problem 3.2 (see Section 3.2)
and Proposition 3.8. ut

Proposition 3.8 (First derivative of E g̃). The partial derivatives of E g̃ are

∂E g̃

∂ui
(λ ,u) =Θi− ∑

ijk3i
α̃

i
jk (30)

∂E g̃

∂λij
(λ ,u) = β̃

k
ij + β̃

l
ij−π. (31)

Here α̃ , β̃ are defined by (21) and (20) (with α , β , ` replaced by α̃ , β̃ , ˜̀) if (λ ,u)
is contained in the feasible region of E g̃. For (λ ,u) not contained in the feasible
region, the definition of α̃ , β̃ is extended like in Definition 3.12.

Proof. Equations (30) and (31) follow from the definition of E g̃ and Proposi-
tion 3.14 on the partial derivatives of f g. ut

Theorem 3.9 (Uniqueness for mapping problems). If Problem 3.2 with target ge-
ometry g̃∈ {euc,hyp} has a solution, then the solution is unique — except if g̃ = euc
and V0 = /0 (the case of Problem 3.1). In this case, the solution is unique up to scale.

The critical point (λ ,u) ∈ RE∆ ×RV∆ that corresponds, via (23) and (24), to a
solution (Σ , ˜̀)g̃ of Problem 3.2 with g̃ ∈ {euc,hyp} is a minimizer of E g̃

∆ ,Θ under
the constraints described in Theorem 3.7. The minimizer is unique except in the
following cases. If g̃ = euc and V0 = /0, then E g̃

∆ ,Θ is constant along all lines in the
“scaling direction” (0,1V∆

) ∈ RE∆ ×RV∆ . If the 1-skeleton of Σ is bipartite and
V0 = /0, then E g̃

∆ ,Θ is constant in the direction that is ±1 on the two color classes

of V∆ , respectively, and takes appropriate values on E∆ \ EΣ so that λ̃ij defined
by (23) remains constant for all ij ∈ E∆ . (In both exceptional cases, one can make
the minimizer unique by adding the constraint of fixing ui for some i ∈V∆ .)

Proof. The theorem follows from Theorem 3.7 and the following observations.
(1) If the point (λ ,u) ∈ RE∆ ×RV∆ corresponds to a solution of Problem 3.2, it is

contained in the feasible region of E g̃
∆ ,Θ .

(2) By (29) and Proposition 3.16, the functions Eeuc and Ehyp are convex.
(3) For (λ ,u) in the feasible region, the second derivative D2Ehyp(λ ,u) is a positive

definite quadratic form of dλ̃ , i.e., D2Ehyp(λ ,u)(λ̇ , u̇)≥ 0 for all (λ̇ , u̇)∈RE∆ ×
RV∆ and D2Ehyp(λ ,u)(λ̇ , u̇) = 0 if and only if

λ̇ij + u̇i + u̇ j = 0 for all ij ∈ E∆ .
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(4) Similarly, for (λ ,u) in the feasible region, the second derivative D2Eeuc(λ ,u) is
a positive semidefinite quadratic form with D2Eeuc(λ ,u)(λ̇ , u̇) = 0 if and only
if

λ̇ij + u̇i + u̇ j = c for all ij ∈ E∆ , for some c ∈ R.
ut

In the following proposition, we collect explicit formulas for the second deriva-
tives of the functions E g̃. They are useful for the numerical minimization of Eeuc

and Ehyp, and even for finding critical points of Esph, as explained in Section 6.2.

Proposition 3.10 (Second derivative of E g̃). The second derivatives of Eeuc, Ehyp,
and Esph are the quadratic forms

D2E g̃(λ ,u) =
1
2 ∑

ijk∈F∆

(
qk

ij(λ ,u)+qi
jk(λ ,u)+q j

ki(λ ,u)
)
,

where qk
ij(λ ,u) = 0 if ˜̀ij, ˜̀jk, ˜̀ki defined by (23), (24) violate the triangle inequali-

ties (25), or, in the case of g̃ = sph, inequality (26). Otherwise, the quadratic forms
qk

ij(λ ,u) are defined by

qk
ij =


cot α̃k

ij (dλki−dλjk +dui−du j)
2 (euc)

cot β̃ k
ij
(
(dλik−dλkj +dui−du j)

2 + tanh2 ( ˜̀ij
2

)
(dλij +dui +du j)

2
)

(hyp)

cot β̃ k
ij
(
(dλik−dλkj +dui−du j)

2− tan2
( ˜̀ij

2

)
(dλij +dui +du j)

2
)

(sph)

where α̃ , β̃ are defined by (21) and (20) (with α , β , ` replaced by α̃ , β̃ , ˜̀).

Proposition 3.10 follows from (29) and Proposition 3.15 about the second deriva-
tives of f g.

3.4 The peculiar triangle functions

This section is concerned with three real valued functions f euc, f hyp, f sph of three
variables that are the main building blocks for the action functions Eeuc, Ehyp, Esph

of the variational principles. Since we consider single triangles in this section, not
triangulations, we can use simpler notation. For {i, j,k}= {1,2,3}, let

λi = λjk, `i = `jk, αi = α
i
jk, βi = β

i
jk.

The terminology introduced in the following definition makes Definition 3.12 easier
to state.

Definition 3.11. Let the feasible region of f euc and f hyp be the open subset of all
λ ∈ R3 such that ` ∈ R3

>0 determined by (22) satisfies the triangle inequalities, i.e.,
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`k < `i + ` j (32)

for {i, j,k}= {1,2,3}.
Let the feasible region of f sph be the open subset of all λ ∈ R3 such that λ < 0,

and such that ` ∈ R3
>0, which is then well-defined by (22), satisfies the triangle

inequalities (32) and
`1 + `2 + `3 < 2π. (33)

Definition 3.12. We define the three functions

f euc, f hyp, f sph : R3→ R

by

f g(λ1,λ2,λ3) = β1λ1 +β2λ2 +β3λ3 +L(α1)+L(α2)+L(α3)

+L(β1)+L(β2)+L(β3)+L
( 1

2 (π−α1−α2−α3)
)
, (34)

where g ∈ {euc,hyp,sph}, L(x) denotes Milnor’s Lobachevsky function [18]

L(x) =−
∫ x

0
log
∣∣2sin(t)

∣∣dt, (35)

and,
• if λ is in the feasible region of f g, then the angles α , β are defined as the angles

(shown in Figure 4) in a euclidean, hyperbolic, or spherical triangle (depending on
g) with sides `1, `2, `3 determined by (22). That is, α and β are defined by (21)
and (20).
• Otherwise, if g = sph, and if either at least two λ s are non-negative or λ < 0

and inequality (33) is violated, let

αk = αi = α j = π, βk = βi = β j = 0.

• Otherwise, if the triangle inequality (32) is violated, or if g = sph and λk ≥ 0,
let

αk = βk = π, αi = α j = βi = β j = 0.

Fig. 5 Graph of Milnor’s
Lobachevsky function, y =
L(x).
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Figure 5 shows a graph of Milnor’s Lobachevsky function. It is continuous, π-
periodic, odd, has zeros at the integer multiples of π/2, and is real analytic except
at integer multiples of π , where the derivative tends to +∞.

Remark 3.13. In the euclidean case, (34) simplifies to

f euc(λ ) = αiλi +α jλ j +αkλk +2L(αi)+2L(α j)+2L(αk). (36)

This follows immediately from α1 +α2 +α3 = π , α = β , and L(0) = 0.

Proposition 3.14 (first derivative). The functions f g, g ∈ {euc,hyp,sph}, are con-
tinuously differentiable and

∂ f g

∂λi
= βi. (37)

Proof. Note that the angles α , β are continuous functions of λ on R3. Hence f g de-
fined by (34) is also continuous. We will show that f g is continuously differentiable
with derivative (37) on an open dense subset of the domain, namely, the union of
(a) the feasible region and (b) the interior of its complement. Since f g is continuous
and df g extends continuously to R3, the claim follows.

(a) First, suppose λ is contained in the feasible region of f g. By symmetry, it
suffices to consider the derivative with respect to λ1. From (34) and (35) one obtains

∂ f g

∂λ1
= β1+

3

∑
i=1

((
λi−log(2sinβi)

) ∂βi

∂λ1
+
(
−log(2sinαi)+

1
2 log

∣∣2sin(π−α1−α2−α3
2 )

∣∣) ∂αi

∂λ1

)
(38)

For hyperbolic and spherical triangles, one derives from the respective cosine
rules

sinh2 `i

2
=

sinβi sin π−α1−α2−α3
2

sinα2 sinα3
(hyperbolic),

sin2 `i

2
=

sinβi sin α1+α2+α3−π

2
sinα2 sinα3

(spherical).

In both cases, expand the fraction on the right hand side by four and take logarithms
to find

λi = log(2sinβi)+ log
∣∣2sin π−α1−α2−α3

2

∣∣− log(2sinα j)− log(2sinαk).

Substitute this expression for λi in (38) and use dβi =
1
2 (dαi− dα j− dαk) to see

that all terms on the right hand side of (38) cancel, except β1.
For euclidean triangles, (38) simplifies to
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∂ f g

∂λ1
= β1 +

3

∑
i=1

(
λi−2log(2sinαi)

) ∂αi

∂λ1
,

where
λi−2log(2sinαi) = 2log

`i

2sinαi
= 2logR

does not depend on i. (R denotes the circumradius.) Equation (37) follows because
the angle sum is constant.

(b) Now suppose λ is contained the interior of the complement of the feasi-
ble region of f g. Since β1,β2,β3 are constant on each connected component of the
complement of the feasible region, and since

f g(λ1,λ2,λ3) = β1λ1 +β2λ2 +β3λ3,

outside the feasible region, equation 37 holds also in this case. This completes the
proof. ut

Proposition 3.15 (second derivative). For g ∈ {euc,hyp,sph} the function f g is
twice continuously differentiable on its feasible set and the second derivative is

D2 f euc =
1
2

3

∑
i=1

cotαi (dλ j−dλk)
2, (39)

D2 f hyp =
1
2

3

∑
i=1

cotβi
(
(dλ j−dλk)

2 + tanh2 ( `i
2

)
dλ

2
i
)
, (40)

D2 f sph =
1
2

3

∑
i=1

cotβi
(
(dλ j−dλk)

2− tan2 ( `i
2

)
dλ

2
i
)
. (41)

On each component of the complement of its feasible set, the function fg is linear
so the second derivative vanishes.

A proof of (39) is contained in [4] (Proposition 4.2.3), see Remark 3.17 below.
Equations (40) and (41) can be derived by lengthy calculations.

Proposition 3.16. (i) The function f euc is convex. On its feasible set, the second
derivative D2 f euc is positive semidefinite with one-dimensional kernel spanned by
the “scaling direction” (1,1,1).

(ii) The function f hyp is convex. On its feasible set, the second derivative D2 f hyp

is positive definite, so the functions is locally strictly convex.

Part (i) is proved in [4] (Propositions 4.2.4, 4.2.5, note the following remark)
directly from (39). We do not know a similarly straightforward proof of part (ii). The
proof in [4] (Section 6.2) is based on a connection with 3-dimensional hyperbolic
geometry: f hyp is the Legendre dual of the volume of an ideal hyperbolic prism
considered as a function of the dihedral angles. This volume function is strictly
concave, as shown by Leibon [16]. His argument uses the decomposition of an ideal
prism into three ideal tetrahedra.



20 A. I. Bobenko, S. Sechelmann, B. Springborn

Remark 3.17. The functions f and V̂h defined in [4] (equations (4-3), (6-4)) are re-
lated to the functions f euc and f hyp by

f euc(λ1,λ2,λ3) = 2 f (λ1
2 , λ2

2 , λ3
2 ), (42)

f hyp(λ1,λ2,λ3) = 2V̂h(λ1,λ2,λ3,0,0,0). (43)

4 Conformal maps of cyclic quadrangulations

Having introduced the mapping problems and variational principles, we return to
conformal maps of cyclic quadrangulations. Some basic facts were already dis-
cussed in Section 2.8. Here, in Section 4.1, we consider a simple experiment that
demonstrates the somewhat unexpected appearance of orthogonal circle patterns,
and also a necessary condition for the boundary angles. In Section 4.2, we discuss a
discrete version of the Riemann mapping problem for quadrangulations.

4.1 Emerging circle patterns and a necessary condition

Consider the two discrete conformal maps shown in the two rows of Figure 6. The
domains (shown left) are a square and a rectangle, subdivided into 6× 6 and 6× 5
squares, respectively. We solve the mapping Problem 3.1 by minimizing Eeuc as
explained in Section 3.3, prescribing boundary angles to obtain maps to parallelo-
grams: Θ = 50◦ and 130◦ for the corner vertices, Θ = 180◦ for the other bound-
ary vertices, and Θ = 360◦ for interior vertices. The resulting quadrangulations are
shown in the middle.

Fig. 6 Mapping a rectangle to a parallelogram. Note the orthogonal circle pattern in top row and
the wiggly vertical lines in the bottom row.
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On first sight, the 6× 6 example shown in the top row behaves rather like one
would expect from a conformal map. The horizontal and vertical “coordinate lines”
of the domain are mapped to polygonal curves that look more or less like they could
be discretizations of reasonable smooth curves. In the 6× 5 example shown in the
bottom row, the images of the vertical lines zigzag noticeably.

A closer look at the 6×6 example reveals a remarkable phenomenon. Let us bi-
color the vertices black and white so that neighboring vertices have different colors,
with the corners colored white. Then, in the image quadrangulation, the edges inci-
dent with a black vertex meet at right angles, and the edges incident with a white
vertex have the same length. One can therefore draw a circle around each white ver-
tex through the neighboring black vertices as shown in Figure 6 (top right). At the
black vertices, these circles touch and intersect orthogonally. Such circle patterns
were studied by Schramm [25] as discrete analogs of conformal maps.

Given such a circle pattern with orthogonally intersecting circles, the quadran-
gulation formed by drawing edges between circle centers and intersection points
consists of quadrilaterals that are right-angled kites. Such kites have complex cross-
ratio −1. Hence, the quadrangulation coming from an orthogonal circle pattern
is discretely conformally equivalent (in our sense) to a combinatorially equivalent
quadrangulation consisting of squares.

The conformal map shown in the top row of Figure 6 “finds” the orthogonal
circle pattern because that circle pattern exists and the conformal map is unique
(by Theorem 3.9). For 6× 5 example shown in the bottom row, a corresponding
orthogonal circle pattern does not exists. No matter which coloring one chooses,
there are two black vertices at which the total angle changes (from 90◦ to 50◦ and
130◦, respectively). The neighbors of a vertex do not lie on a circle. Figure 6 (bottom
right) shows two circles drawn through three out of four neighbors.

If we map an m×n square grid to a parallelogram like in Figure 6, an orthogonal
circle pattern will appear if m an n are even. No such pattern will appear if one of
the numbers is even and the other is odd. What happens if both m and n are odd?
In this case, the conformal map does not exist. The corners with increasing angle
and the corners with decreasing angle would have different colors. This violates the
necessary condition expressed in the following theorem.

Theorem 4.1 (Necessary condition for the existence of conformal map). Let Σ

be an abstract quadrangulation of the closed disk, and let

z, z̃ : VΣ → C

determine two discretely conformally equivalent immersions of Σ into the complex
plane. Denote their angle sums at boundary vertices v ∈ VΣ by Θv and Θ̃v, respec-
tively. Since the 1-skeleton of Σ is bipartite, we may assume the vertices are colored
black and white. Let V ∂

b and V ∂
w denote the sets of black and white boundary vertices

of Σ . Then
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∑
v∈V ∂

b

(Θ̃v−Θv)≡ 0 (mod 2π), (44)

∑
v∈V ∂

w

(Θ̃v−Θv)≡ 0 (mod 2π). (45)

(Since ∑V ∂
b ∪V ∂

w
(Θ̃v−Θv) = 0, equations (45) and (44) are equivalent.)

Proof. Since z and z̃ are two solutions of the cross-ratio system on Σ with the same
cross-ratios (see Section 2.8), there exists by Proposition 2.13 a function w : VΣ →C
such that (16) holds for all edges ij ∈ EΣ . Now suppose v0, . . . ,v2n−1 ∈ VΣ are the
boundary vertices in cyclic order (with indices taken modulo 2n). Then

ei(Θ̃vk−Θvk ) =
(z̃vk+1 − z̃vk)(zvk−1 − zvk)

(z̃vk−1 − z̃vk)(zvk+1 − zvk)
=

wvk+1

wvk−1

,

so
n−1

∏
k=0

ei(Θ̃v2k−Θv2k ) =
n−1

∏
k=0

ei(Θ̃v2k+1−Θv2k+1 ) = 1.

Equations (44) and (45) follow. ut

4.2 Riemann maps with cyclic quadrilaterals

Consider the following discrete version of the Riemann mapping problem: Map a
cyclic polyhedral surface that is topologically a closed disk discretely conformally to
a planar polygonal region with boundary vertices on a circle. An example is shown
in Figure 7, top row. This type of problem can often be reduced to Problem 3.2.
Then, by the variational principle, if a solution exists, it can be found by minimizing
a convex function. For triangulations, the reduction of the discrete Riemann map-
ping problem to Problem 3.2 is explained in [4] (Section 3.3). Here, we consider
the case of quadrangulations. (The arguments can be extended to even polygons
with more than four sides. We restrict our attention to quadrilaterals because the
combinatorial restrictions discussed in the following paragraph become even more
annoying for surfaces with hexagons, octagons, etc.)

The basic idea is the same as for triangulations: First, map the polyhedral sur-
face to the half plane with one boundary vertex at infinity. Then apply a Möbius
transformation. This leads to a combinatorial restriction: No face may have more
than one edge on the boundary. (The face would degenerate when the boundary is
mapped to a straight line.) For triangulations, this means that no triangle may be
connected to the surface by only one edge. If this condition is violated, cutting off
such “ears” often leads to an admissible triangulation. For quadrangulations, this
fix does not work in typical situations. Instead, if a quadrilateral contains two con-
secutive edges on the boundary, cut off a triangle. The resulting polyhedral surface
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k

↓ ↑

Fig. 7 Riemann mapping with cyclic quadrilaterals

will consist mostly of quadrilaterals with some triangles on the boundary, as in the
example shown in Figure 7.

Suppose (Σ , `)euc is a euclidean cyclic polyhedral surface that is homeomorphic
to the closed disk and consists mostly of quadrilaterals. (For the following con-
struction we really only need a boundary vertex that is incident with quadrilateral
faces.) To map it to a polygonal region inscribed in a circle, proceed as follows (see
Figure 7):
(1) Choose a vertex k on the boundary of Σ such that all incident faces are quadri-

laterals.
(2) Apply a discrete conformal change of metric (3) such that all edges incident

with k have the same length. One may choose u = 0 for all vertices except the
neighbors of k. It does not matter if polygon inequalities are violated after this
step.
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Fig. 8 Here we show the face circumcircles of the solution to the Riemann mapping problem
of Figure 7. It looks conspicuously like an orthogonal circle pattern. But the face circumcircles
intersect only approximately but not exactly at right angles.

(3) Let (Σ ′, `′)euc be the cyclic polyhedral complex obtained by removing vertex k
and all incident quadrilaterals.

(4) Solve Problem 3.2 for (Σ ′, `′)euc with prescribed total angles Θi = 2π for interior
vertices of Σ ′, Θi = π for boundary vertices of Σ ′ that were not neighbors of k
in Σ , and fixed logarithmic scale factors ui = 0 for those that were neighbors of
k. The result is a planar polyhedral surface as shown in Figure 7, bottom. The
boundary consists of one straight line segment containing all boundary edges of
Σ ′ that were also boundary edges of Σ , and two or more straight line segments,
each consisting of two edges that were incident with a removed quadrilateral.

(5) Apply a Möbius transformation (e.g., z 7→ 1/z) to the vertices that maps the
boundary vertices of Σ to a circle and the other vertices to the inside of this
circle. Reinsert k at the image point of ∞ under this Möbius transformation.
Each face ijmk ∈ Σ incident with k is cyclic because the three vertices i, j, and
m are contained in a line before transformation.

(6) Optionally apply a 2-dimensional version of the Möbius normalization de-
scribed in Section 6.3.

Proposition 4.2. The result of this procedure is a planar cyclic polyhedral surface
that is discretely conformally equivalent to (Σ , `)euc and has its boundary polygon
inscribed in a circle.

Proof. That the boundary polygon is inscribed in a circle is obvious from the con-
struction. Using the Möbius invariance of discrete conformal equivalence (Propo-
sition 2.5), it is not difficult to see that the surfaces without quadrilaterals incident
with k are discretely conformally equivalent. To show that the whole surfaces are
equivalent, it suffices to show that corresponding quadrilaterals incident with k have
the same complex cross-ratio.
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After step (2), the length cross-ratio of a quadrilateral incident with k is equal to
the simple length ratio of the two edges that are not incident with k.

After step (4), the length cross-ratio of these edges is unchanged due to the fixed
logarithmic scale factors u = 0 on the neighbors of k. Also, these edges are now
collinear because of the prescribed angle Θ = π between them.

After applying the Möbius transformation in step (5), the image of the point at
infinity and the other three vertices of our quadrilateral incident with k form again a
cyclic quadrilateral with the same complex cross-ratio as in the beginning. ut

5 Multiply connected domains

5.1 Circle domains

Koebe’s generalization of the Riemann mapping theorem says that multiply con-
nected domains are conformally equivalent to domains bounded by circles, and the
uniformizing map to such a circle domain is unique up to Möbius transformations.
A method to construct discrete Riemann maps is described in [4] (Section 3.3) for
triangulations and for mostly quadrilateral meshes in the previous Section 4.2. Hav-
ing generalized the notion of discrete conformal equivalence from triangulations to
cyclic polyhedral surfaces, it is straightforward to adapt this method to construct
discrete maps to circle domains:
(1) Fill holes by gluing faces to all but one boundary component, so that the result-

ing surface is homeomorphic to a disk.
(2) Construct the discrete Riemann map.
(3) Remove the faces that were added in step (1).

Figure 9 shows an example.

Fig. 9 Discrete conformal map of a multiply-connected domain (left) to a circle domain (middle).
The images of vertical and horizontal “parameter lines” are shown on the right.
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5.2 Special slit domains

Any multiply connected domain can be mapped to the complex plain with parallel
slits [20]. In principle, it is possible to construct discrete conformal maps that map
holes to slits by solving Problem 3.1. On each boundary component that should be
mapped to a slit, set the desired total angle Θ = 2π for the two vertices that should
be mapped to the endpoints of the slit, and set Θ = π for all other vertices on that
boundary component. However, this will not work in general. While the resulting
surface will be flat, the developing map to the plane will in general have translational
monodromy for a cycle around the hole. The surface will only close up in the plane
if the vertices that should be mapped to the endpoints of the slit are chosen exactly
right. (This will in general require modifying the original mesh.)

Sometimes, the symmetry of the problem determines the right positions of the
end-vertices, so that discrete conformal maps to slit surfaces can be computed. The
first two rows of Figure 10 show examples. The bottom row visualizes a discrete
conformal map where circular holes are mapped to slits. Here, we use the following
trick: We start with the slit surface and map it to a surface with circular holes as
described in Section 5.1.

6 Uniformization of spheres

This section is concerned with discrete conformal maps of polyhedral surfaces of
genus 0 onto the round sphere. For triangulations, this is described in [4] (Section
3.2). In Section 6.1, we adapt this method to quadrangulations. This is similar to the
discrete Riemann mapping with quadrilaterals described in Section 4.2. Effectively,
this method reduces the problem to minimizing the convex euclidean functional
Eeuc. The spherical version of the variational principle (Theorem 3.7) involves the
non-convex function Esph. It is not as practical for calculations, because one has to
find a saddle point instead of a minimum. Nevertheless, the spherical functional can
often be used to calculate maps to the sphere. This is explained in Section 6.2.

6.1 Uniformizing quadrangulations of the sphere

Suppose (Σ , `)euc is a cyclic polyhedral surface with quadrilateral faces that is home-
omorphic to the sphere.
(1) Choose a vertex k ∈VΣ .
(2) Apply a discrete conformal change of metric (3) such that all edges incident

with k have the same length. One may choose u = 0 for all vertices except the
neighbors of k. It does not matter if polygon inequalities are violated after this
step.
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Fig. 10 Mapping surfaces with holes to slit surfaces. In all images, the left and right parts of the
boundary are identified by a horizontal translation. Preimages of horizontal lines visualize the flow
of an incompressible inviscid fluid around the hole in a channel with periodic boundary conditions.
Top row: A cylinder with a triangular hole is mapped to a cylinder with a slit. One vertex of the
triangle and the midpoint of the opposite side are mapped to the endpoints of the slit. Middle row:
An arrow shaped slit is mapped to a straight slit. The two vertices at the arrows tip, on either side
of the slit, are mapped to the endpoints of the straights slit. Bottom row: Three circular boundary
components are mapped to horizontal slits. (The slit surface is not shown.)

(3) Let (Σ ′, `′)euc be the complex obtained by removing vertex k and all incident
quadrilaterals.

(4) Solve Problem 3.2 for (Σ ′, `′)euc with prescribed total angles Θi = 2π for interior
vertices of Σ ′, Θi = π for boundary vertices of Σ ′ that were not neighbors of k
in Σ , and fixed scale factors ui = 0 for vertices that were neighbors of k in Σ .
The result is a planar polyhedral surface with cyclic quadrilaterals. Consecutive
boundary edges that belonged to a face incident with vertex k in Σ are contained
in a straight lines.
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Fig. 11 Discrete conformal map from the cube to the sphere, calculated with the method described
in Section 6.1. We apply Möbius normalization (Section 6.3) to the polyhedral surface with vertices
on the sphere to achieve rotational symmetry.

(5) Map the vertices to the unit sphere by stereographic projection and reinsert the
vertex k at the image point of ∞.

(6) Optionally apply Möbius normalization, see Section 6.3.

Proposition 6.1. The result is a cyclic polyhedral surface with vertices on the unit
sphere that is discretely conformally equivalent to (Σ , `)euc.

This can be seen in the same way as the corresponding statement about discrete
Riemann maps with quadrilaterals (Proposition 4.2). Figure 11 shows a discrete
conformal map calculated by this method.

6.2 Using the spherical functional

Fig. 12 Mapping conformally to the sphere using the spherical functional. The spherical surfaces
are Möbius normalized to achieve rotational symmetry.

It is possible to use the spherical functional Esph to calculate maps to the sphere
even though it is not convex. For simplicity, we consider only triangulations, so all
λ variables are fixed and we may consider Esph as function of the logarithmic scale
factors u only (see Section 3.3). A numerical method has to find a saddle point of
Esph(u).
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Note that the scaling direction 1V∆
∈RV∆ is a negative direction of the Hessian at

a critical point: Suppose (∆ , `)sph is a spherical triangulation with the desired angle
sum Θi at each vertex i. Then 0 ∈ RV∆ is a critical point of Esph

∆ ,Θ (u). If we enlarge
all edge lengths by a common factor eh > 1, then all angles become larger, so every
component (30) of the gradient of Esph becomes negative. Following the negative
gradient would make all lengths even larger.

The following minimax method works in many cases. Define the function Ẽ by
maximizing the functional Esph in the scaling direction,

Ẽ(u) = max
h∈R

{
Esph(u+h1V∆

)
}

(46)

Minimize functional Ẽ in a hyperplane of RV∆ transverse to the direction 1V∆
.

Figure 1 (top) and Figure 12 show examples of discrete conformal maps to poly-
hedral surfaces inscribed in a sphere that were calculated using this method.

6.3 Möbius normalization

The notion of discrete conformal equivalence of euclidean polyhedral surfaces
(Σ , `)euc in R3 is Möbus invariant (Proposition 2.5). If all vertices v ∈ VΣ are con-
tained in the unit sphere S2 ⊂ R3, then there is a Möbius transformation T of S2

such that the center of mass of the transformed vertices is the origin [27],

∑
v∈VΣ

T (v) = 0.

The Möbius transformation T is uniquely determined up to post-composition with
a rotation around the origin.

The following method can be used to calculate such a Möbius transformation:
Find the unique minimizer of the function δ defined below. Then choose for T a
Möbius transformation that maps S2 to itself and the minimizer to the origin. Here,
we only provide explicit formulas for the function δ and its first two derivatives. For
a more detailed account, we refer the reader to [27]. The function δ is defined on
the open unit ball in R3 by

δ (x) = ∑
v∈V

log

(
−〈x,v〉√
−〈x,x〉

)
, (47)

where
〈x,y〉= x1y1 + x2y2 + x3y3−1. (48)

The gradient and Hessian matrix of δ are
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gradδ (x) = ∑
v∈V

(
v
〈x,v〉

− x
〈x,x〉

)
, (49)

Hessδ (x) = ∑
v∈V

(
2

xT x
〈x,x〉2

− vT v
〈x,v〉2

−diag
(

1
〈x,x〉

))
. (50)

7 Uniformization of tori

Every Riemann surface R of genus one is conformally equivalent to a flat torus, i.e.,
to a quotient space C/Γ , where Γ = Zω1 +Zω2 is some two-dimensional lattice
in C. The biholomorphic map from R to C/Γ , or from the universal cover of R to C,
is called a uniformizing map. For a polyhedral surface of genus one, constructing
a discrete uniformizing map amounts to solving Problem 3.1 with prescribed total
angle Θ = 2π at all vertices. This provides us with a method to calculate approxi-
mate uniformizing maps for Riemann surfaces of genus one given in various forms.
We consider examples of tori immersed in R3 in Section 7.1 and elliptic curves in
Section 7.2. (We will also consider tori in the form of Schottky uniformization in
Section 8.2, as a toy example after treating the higher genus case.)

The belief that discrete conformal maps approximate conformal maps is not
based on a proven theorem but on experimental evidence like the Wente torus ex-
ample of Section 7.1 and the numerical experiments of Section 7.4.

7.1 Immersed tori

First we consider a simple example with quadrilateral faces. Figure 13 (left) shows
a coarse discretization of a torus. The faces are isosceles trapezoids, so they are
inscribed in circles. On the right, the figure shows the uniformization obtained by
solving Problem 3.1 with prescribed total angle Θ = 2π at all vertices.

Fig. 13 Uniformization of an immersed torus with cyclic quadrilateral faces
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To test the numerical accuracy of our discrete uniformizing maps, we consider
the famous torus of constant mean curvature discovered by Wente [29]. Explicit
doubly periodic conformal immersion formulas (i.e., formulas for the inverse of a
uniformizing map) are known in terms of elliptic functions [1, 28, 3].

Fig. 14 Uniformization of the Wente torus

Figure 14 (left) shows a triangulated model of the Wente torus constructed by
sampling an explicit immersion formula [3] on a nearly square lattice containing
the period lattice Γ . On the right, the figure shows the discrete uniformization,
which reproduces the regular lattice Γ to high accuracy. The modulus τ = ω2/ω1
of the Wente torus has been determined numerically [11] as τ = 0.41300 . . .+
i 0.91073 . . . . The modulus of the discrete uniformization of the discretized surface
shown in the figure is τ̃ = 0.41341 . . .+ i 0.91061 . . . .

7.2 Elliptic curves

An algebraic curve of the form

µ
2 = a

k

∏
j=1

(λ −λ j), (51)

where the λ j ∈ C are distinct and k = 3 (an elliptic curve) or k = 4 (with the singu-
larity at infinity resolved), represents a Riemann surface of genus one as branched
double cover of the λ -sphere CP1, which we identify conformally with the unit
sphere S2 ⊂ R3. The branch points are λ1,λ2,λ3,∞ if k = 3 and λ1,λ2,λ3,λ4 if
k = 4. Every Riemann surface of genus one can be represented in this way.

We construct a discrete model for a double cover of S2 branched at four points
λ1, . . . ,λ4 in the following way. Choose n other points p1, . . . , pn ∈ S2 and let P be
the boundary of the convex hull of the points {λ1, . . . ,λ4, p1, . . . , pn}. Then P is a
convex polyhedron with n+ 4 vertices and with faces inscribed in circles. (Gener-
ically, the faces will be triangles. In Section 7.3 we explain the method we used
to obtain “good” triangles.) Find two disjoint simple edge paths γ1,γ2 joining the
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branch points λ j in pairs. Take a second copy P̂ of the polyhedron P. Cut and glue P
and P̂ along the paths γ1,γ2 to obtain a polyhedral surface of genus 1. Uniformize it
by solving Problem 3.1. One obtains a discrete conformal map to a flat torus, whose
inverse can be seen as a discrete elliptic function. Figure 15 shows examples. We
will treat hyperelliptic curves in a similar fashion in Section 8.3.

Fig. 15 Discrete uniformization of elliptic curves. Left: If the branch points in S2 are the vertices
of a regular tetrahedron, period lattice is very close to a hexagonal lattice. Middle: If the branch
points form a square on the equator, the period lattice is very close to a square lattice. Right: an
example with branch points in unsymmetric position.

Remark 7.1. Instead of constructing a doubly covered convex euclidean polyhedron
with vertices on the unit sphere as described above, one could also construct a spher-
ical triangulation of the doubly covered sphere that is invariant under the elliptic
involution (exchanging sheets). These two approaches are in fact equivalent due to
Remark 2.3.

Mapping a flat torus to an elliptic curve. We can also go the opposite way, map-
ping a flat torus to a double cover of S2. Start with a triangulated flat torus. The
triangulation should be symmetric with respect to the elliptic involution, i.e., sym-
metric with respect to a half turn around one vertex (which is then also a half turn
around three other vertices). The quotient space of the triangulated torus modulo the
elliptic involution is then a triangulated sphere. Map it to the sphere by the procedure
explained in [4] (Section 3.2), see also Section 6.1 of the present article.

Figures 16 and 17 show examples where we started with a hexagonal and a square
torus respectively.

7.3 Choosing points on the sphere

The uniformization procedure for elliptic curves described in Section 7.2 requires
choosing points on the sphere in addition to the four given branch points. For nu-
merical reasons, these points should be chosen so that taking the convex hull leads
to triangles that are close to equilateral. We obtained good triangulations by min-
imizing the following energy for n points in R3 while fixing the subset of branch
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Fig. 16 Mapping the hexagonal torus C/(Z+ τZ), τ = 1
2 + i

√
3

2 (left) to a double cover of the
sphere (right). Because the regular triangulation of the torus on the left is symmetric with respect
to the elliptic involution, its image projects to a triangulation of the sphere seen on the right.

Fig. 17 Mapping the square torus C/(Z+ iZ) (left) to a double cover of the sphere (right). Again,
the triangulation on the left is symmetric with respect to the elliptic involution, so the image on the
right projects to a triangulation of the sphere.

points:

E = n2
∑
v∈V

(〈v,v〉−1)2 + ∑
v,w∈V
w 6=v

1
〈w− v,w− v〉

, (52)

where 〈., .〉 denotes the standard euclidean scalar product of R3. We do not enforce
the constraint that the points should lie in the unit sphere S2. Instead, we simply
project back to S2 after the optimization.

As initial guess we choose points uniformly distributed in S2. To achieve this we
choose points with normally distributed coordinates and project them to S2 [19].

7.4 Numerical experiments

Given the branch points of an elliptic curve, the modulus τ can be calculated in
terms of hypergeometric functions. In this section, we compare the theoretical value
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of τ with the value τ̂ that we obtain by the discrete uniformization method explained
in Section 7.2.

We consider elliptic curves in Weierstrass normal form

µ
2 = 4(z−λ1)(z−λ2)(z−λ3)

= 4z3−g2z−g3,
(53)

so the branch points λ1,λ2,λ3,∞ satisfy λ1 +λ2 +λ3 = 0, and

g2 =−4(λ1λ2 +λ2λ3 +λ3λ1), g3 = 4λ1λ2λ3. (54)

We calculate the modulus τ with Mathematica using the built-in function Weier-
strassHalfPeriods[{g2,g3}]. We normalize τ and the value τ̂ obtained by
discrete uniformization so that they lie in the standard fundamental domain of the
modular group, |τ|> 1 and |Re(τ)|< 1

2 , and we consider the error |τ− τ̂|. (We stay
away from the boundary of the fundamental domain.)

Subdivided icosahedron. In this experiment we start with the twelve vertices of
a regular icosahedron and choose the branch points λ1, . . . ,λ4 among them. The
remaining points act the role of p1, . . . , pn. To study the dependence of |τ − τ̂| on
the number of points we repeatedly subdivide all triangles into four similar triangles
and project the new vertices to S2. The number of vertices grows exponentially
while the triangles remain close to equilateral. Figure 18 shows the result of this
experiment. It suggests the error behaves like

|τ− τ̂|= O(nα), α ≈−0.88. (55)
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τ̂

α = −0.8784918

Fig. 18 Left: Error for zero to six subdivision steps. The log-log plot shows the error |τ− τ̂| against
the number of vertices of the subdivided icosahedron (i.e., in one sheet of the doubly covered
sphere). To estimate the asymptotic behavior of the error, we determine the slope α ≈−0.88 of a
line through the last four points by linear regression. Right: Result of the discrete uniformization
after two subdivision steps.

Dependence on mesh quality. In the second experiment we choose the additional
points randomly to analyze how the quality of the triangulation affects the approxi-
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mation error. We use the following quantities to measure the quality of the triangu-
lation based on length cross-ratios for edges:

Qlcr(e) :=
1
2

(
lcr(e)+

1
lcr(e)

)
−1,

Qlmr( f ) :=
1
2

(
lmr( f )+

1
lmr( f )

)
−1,

where lcr denotes the length cross-ratio (9) of an edge, and lmr denotes the length
multi-ratio defined for faces by lmr( f ) = ∏e∈ f lcr(e). If Qlcr = 0 for all edges, then
the mesh is discretely conformally equivalent to a mesh consisting of equilateral
triangles. So less is better for these quality measures. To get enough “good” trian-
gulations in our samples, we improve random meshes with the procedure described
in Section 7.3.

Figure 19 (left) shows a plot of 2600 triangulations ranging from n = 20 to
n = 1500 vertices. No clear convergence rate is discernible. The situation improves
when only samples with a certain minimal mesh quality are considered. For the
plot in Figure 19 (right) we selected only triangulations with maxe{Qlmr(e)}< 0.3.
(The results are similar when using the quality measures maxe{Qlcr(e)} < x or
meane{Qlcr(e)}< x.)
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Fig. 19 Left: log-log plot of the error |τ − τ̂| against the number of vertices for a sample
of optimized random triangulations with no quality constraint. Right: Only triangulations with
maxe{Qlmr(e)}< 0.3 are considered. The regression line with slope α ≈−0.63 is shown in red.

The results from these two experiments suggest that the error depends on the
number of n of vertices asymptotically like nα , where the exponent α < 0 depends
on the mesh.
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7.5 Putting a square pattern on a spherical mesh

We can use a variant of the discrete uniformization of elliptic curves (Section 7.2) to
put a square pattern on a surface that is homeomorphic to a sphere. Figure 20 shows
an example.

Fig. 20 The discrete “Berlin Buddy Bear”, a mascot of the SFB/Transregio 109 “Discretization
in Geometry and Dynamics”. The square pattern is put on a bear model as described in Sec-
tion 7.5. Four ramification vertices (marked in red) are chosen at the paws. The uniformization
of the branched double cover is shown in the middle. Each fundamental domain covers the bear
twice. Fundamental domains of the group generated by rotations around the branch points are
shown on the right. Each covers the bear once.

Pick four vertices of the mesh as ramification points and create a two-sheeted
branched cover of the mesh by gluing two copies along paths connecting the se-
lected vertices. The resulting surface is a torus. It can be uniformized using the
euclidean functional. The uniformizing group is generated by two translations. This
group is a subgroup of the group generated by rotations around the branch vertices.
Hence we can achieve the same result as follows. Instead of doubling the surface,
prescribe total angles Θ = π at the ramification vertices and Θ = 2π at all other
vertices. The result is a flat surface with four cone-like singularities of cone-angle
π . The monodromy of the developing map is generated by half-turns. Avoiding the
double cover is more efficient because one only has to minimize a function of (ap-
proximately) half the number of variables.

8 Uniformization of surfaces of higher genus

As in the case of tori (Section 7), we can find uniformizing maps for cyclic polyhe-
dral surfaces of genus g ≥ 2 by solving the hyperbolic version (g̃ = hyp) of Prob-
lem 3.1 with prescribed total angle Θ = 2π at all vertices. (We will only consider
triangulations in the following.) This allows us to calculate approximate uniformiza-
tions for Riemann surfaces of genus g≥ 2 given in various forms, by approximating
them with polyhedral surfaces.

In Section 8.1, we briefly discuss how to construct fundamental polygons and
group generators.
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Not much needs to be said about the uniformization of immersed surfaces. Ex-
amples are shown in Figures 1 (bottom), 21, and 22. In Section 5.1 we discussed

Fig. 21 Discrete uniformization of an embedded triangulated surface of genus 3. A fundamental
polygon with “canonical” edge pairing is shown on the right together with the image mesh. The
edges of the polygon (brown) and the axes of the edge-pairing translations (blue) are pulled back
to the embedded surface shown on the left.

Fig. 22 Left: An embedded triangulated surface of genus 5. Right: Fundamental polygon with
non-canonical edge-pairing. The axes of the edge pairing translations are shown in blue.

mappings from multiply connected domains to circle domains. Analogously, one
can construct uniformizations of polyhedral surfaces of genus g≥ 2 with holes over
the hyperbolic plane with circular holes. An example is shown in Figure 23. More
precisely, the holes are bounded by hyperbolic polygons with vertices on a circle.

We explain how calculate the Fuchsian uniformization for Riemann surfaces
given in the form of a Schottky uniformization in Section 8.2. We discuss the uni-
formization of hyperelliptic curves in Section 8.3 and a geometric characterization
of hyperelliptic Riemann surfaces in Section 8.4.
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Fig. 23 Uniformization of a genus 2 surface with three boundary components over the hyperbolic
plane with three circular holes. The three holes are filled with polygons, which are then triangulated
during the calculation, see Sections 5.1 and 3.

8.1 Fundamental polygons and group generators

Basic facts and notation. Every compact Riemann R of genus g ≥ 2 can be rep-
resented as the quotient of the hyperbolic plane H2 modulo the action of a discrete
group G of hyperbolic translations,

R = H2/G. (56)

Presentations of the group G play an important role. We will denote generators by
capital letters and their inverses by primes,

A′ := A−1 ∈ G. (57)

The uniformization group G can be presented with a finite set of generators

A,B,C,D, . . . ∈ Isom(H2)

subject to a single relation r = 1,

G = 〈A,B,C,D, . . . | r = 1〉 , (58)

where r is a product in which all generators and their inverses appear exactly once.
Such presentations are closely related with fundamental polygons: Every fundamen-
tal polygon in which all vertices are identified leads to such a presentation.

A fundamental domain of G is an open connected subset D of the hyperbolic
plane such that the G-orbit of the closure D̄ covers H2, and gD∩D = /0 for all
g ∈ G\{1}. A fundamental polygon of G is a fundamental domain with polygonal
boundary, i.e., the boundary consists of geodesic segments, the edges of the fun-
damental polygon, which are identified in pairs by the action of the group G. For
each edge a, there is exactly one partner edge a′ such that there exists a translation
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A ∈G mapping a to a′. These edge gluing translations form a generating set of G. If
all vertices of the fundamental polygon are identified (i.e., they belong to the same
G-orbit), then the fundamental polygon has 4g edges. In this case there is only one
relation for these generators. The relation can be determined from the edge labels,
which we always list in counterclockwise order. For example, if the edges of an
octagon are labeled “canonically”,

aba′b′cdc′d′, (59)

then the relation for the corresponding edge pairing translations is

DC′D′CBA′B′A, (60)

and if opposite edges are identified,

abcda′b′c′d′, (61)

then then relation is
DC′BA′D′CB′A = 1. (62)

Computational aspects. Let (Σ , `) be a closed (euclidean, spherical, or hyper-
bolic) triangulated surface of genus g ≥ 2. We solve Problem 3.1 to obtain a com-
binatorially equivalent hyperbolic triangulated surface (Σ , ˜̀)hyp with angle sum
Θ = 2π at every vertex. We lay out the triangles in the hyperbolic plane one-by-one,
following a breadth-first search of the the 1-skeleton of the dual cell complex of Σ .
(Alternatively, one could use a shortest spanning tree of the 1-skeleton of the dual
complex [7].) The result is a fundamental polygon with many vertices. An example
is shown in Figure 24 (a).

We simplify this fundamental polygon by connecting vertices that are identified
with more than one partner by geodesic arcs, as shown in Figure 24 (b). The result-
ing polygon has in general more than one vertex class.

Now we perform the standard algorithm involving cut-and-glue operations (see,
e.g., [12]) to obtain a fundamental polygon with one vertex class and so-called
canonical edge identification

aba′b′cdc′d′ . . . . (63)

During this process we maintain edge-identification transformations, which we rep-
resent as SO+(2,1) matrices.

Hyperbolic translations tend to accumulate numerical errors quite fast when
building products. The situation could be ameliorated somewhat by using the
PSL(2,R)-representation of hyperbolic isometries [8], but the fundamental prob-
lem remains. For this reason, it is desirable to perform the cut-and-glue algorithm
in such a way that the number of matrix products required to maintain the gluing
translations is small. We follow the following greedy approach. Repeatedly we have
to choose labels x, y such that the order in the polygon is x · · ·y · · ·x′ · · ·y′, and then
perform a cut-and-glue sequence to bring the labels next to each other, xyx′y′. We
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(a) (b)

(c) (d)

(e) (f)

Fig. 24 Constructing a fundamental polygon with opposite edges identified. (a) Laying out hy-
perbolic triangles creates a fundamental polygon with many vertices. (b) Straighten the edges be-
tween vertices that are identified with more than one partner (shown in red). (c) Axes of the edge-
pairing translations are shown in blue. (d,e) Two cut-and-paste operations lead to a fundamental
polygon with one vertex class and opposite edges identified. The axes intersect in one point (see
Section 8.4). We move this point to the origin. (f) Tiling the hyperbolic plane with fundamental
polygons.
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always choose a pair x, y, for which this requires the minimal number of matrix
multiplications.

The polygon with canonical edge identifications may not be convex. Following
Keen [13] we can transform this domain into a strictly convex fundamental poly-
gon by choosing a different base vertex for the same group of transformations. Let
aba′b′cdc′d′ . . . be a fundamental polygon and let

G =
〈
A,B,C,D, . . . ∈ PSL(2,R) | . . .DC′D′CBA′B′A = 1

〉
(64)

be the corresponding presentation of the uniformization group, see Figure 25 (left).
Then the axes of the generators A and B intersect in a point p0. Choosing p0 as the
base point of a new fundamental polygon as shown in Figure 25 (right) renders it
convex and uniquely determined for the given group and presentation.

a

b

a'
b'

A

B’

c d

c'

d'

C

D’
p0 p0p0

AB’

C

D’

p2

p1

p3

p4

Fig. 25 The algorithm of Linda Keen to construct strictly convex fundamental polygons. Start with
any canonical fundamental polygon aba′b′cdc′d′ with a corresponding relation DC′D′CBA′B′A= 1
(left). We choose the intersection p0 of the axes of transformations A and B as base point for the
new domain. The new vertices of the fundamental domain are calculated as p1 =A′Bp0, p2 =A′p0,
p3 = Bp0, and p4 = BA′p0. The other vertices are obtained similarly from p4 by applying C and D.

Fundamental polygons with opposite sides identified. When we consider the ge-
ometric characterization of hyperelliptic surfaces in Section 8.4, we want to trans-
form fundamental polygons into fundamental polygons with opposite sides identi-
fied, i.e., polygons with edge labeling

abcd · · ·a′b′c′d′ · · · .

Any fundamental polygon can be transformed into a fundamental polygon with op-
posite edges identified by cut-and-glue operations: First transform the polygon to
canonical form aba′b′cdc′d′ . . . by the standard algorithm. Playing a sequence of
steps that transforms a polygon with opposite edges identified to canonical form
backwards, transforms the canonical polygon to a polygon with opposite edges iden-
tified.
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This algorithm is not optimal with respect to the number of multiplications nec-
essary to maintain the edge-gluing translations. Especially if the original polygon
is already “close” to one with opposite sides identified, the detour via a canonical
polygon is inefficient.

In all examples, we use a heuristic method based on the following idea: Find a
longest sequence of different letters in the edge labeling (ignoring primes), and then
try to move a different letter into this sequence by cutting and gluing.

8.2 From Schottky to Fuchsian uniformization

In this section, we consider Riemann surfaces presented as quotient spaces of clas-
sical Schottky groups.

Definition 8.1. Let C1,C′1 . . . ,Cg,C′g be circles in Ĉ that bound disjoint disks. A
classical Schottky group is a Kleinian group generated by Möbius transformations
σ1, . . . ,σg, where σ j maps the outside of C j onto the inside of C′j.

Each generator σ j has fixed points A j, B j inside C j and C′j, respectively. The
limiting set A of G is the union of orbits of the fixed points A j, B j. G acts freely and
properly discontinuously on the domain of discontinuity Ω = Ĉ \A. The quotient
space R = Ω/G is a Riemann surface of genus g. The domain outside all of the
circles is a fundamental domain of G. The identified pairs of circles form handles.

We discretize the Riemann surface R = Ω/G determined by a classical Schottky
group G as follows. First, construct a triangulation of Ω whose vertex set and com-
binatorics are invariant under the action of G. (Ignore the fact that a Möbius trans-
formation maps straight edges to circular arcs as in Proposition 2.5 on the Möbius
invariance of conformal classes.) For example, the triangulation may be the De-
launay triangulation of a G-invariant point set. The following construction avoids
Delaunay triangulations of infinite (but symmetric) point configurations:

If necessary, choose a Möbius normalization for which the fundamental domain
is bounded in C. For each pair of circles C j,C′j we construct polygons p1 j, . . . , pn j j
inscribed in C j and p′1 j, . . . , p′n j j inscribed in C′ such that σ j(pk j) = p′k j. For exam-
ple, we may choose a regular n-gon inscribed in C j and map the vertices by σ j to
C′j. Triangulate the compact region bounded by these polygons, adding vertices in
the interior as wanted. (For example, use a constrained Delaunay triangulation.) The
images of this triangulation under the action of G (again, considering only combi-
natorics and vertex positions) form a G-invariant triangulation ∆̂ of the universal
cover of R, hence a triangulation ∆ of R. More precisely, the triangulations ∆̂ and ∆

are only defined up to isotopy fixing the vertices. The edge-lengths ˆ̀ (distances
of vertices) do not project from ∆̂ to ∆ , but the length cross-ratios ˆlcr calculated
from these edge lengths do, because they are Möbius invariant. The projected length
cross-ratios lcr determine a discrete conformal class for ∆ (see Section 2.5).

To obtain a Fuchsian uniformization of R, construct edge lengths ` from the
length cross-ratios lcr as described in Section 2.6. Then solve Problem 3.1 (or rather
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the corresponding analytic version, Problem 3.4) for (∆ , `)euc with g̃ = hyp and de-
sired angle sums Θ = 2π at all vertices.

Note that the lengths ` calculated from length cross-ratios lcr may not satisfy
all triangle inequalities. This does not matter for the corresponding analytic Prob-
lem 3.4 (with V = V1, E = E1). If Problem 3.4 has a solution, it is in the discrete
conformal class determined by the length cross-ratios lcr. Also, whether or not Prob-
lem 3.4 has a solution does not depend on the choice of edge lengths ` provided they
lead to the same length cross-ratios.

Figure 26 shows an example of the Fuchsian uniformization of a genus three
surface presented by its Schottky uniformization.

Fig. 26 Discrete Riemann surface of genus 3 given by Schottky data (left) and its Fuchsian uni-
formization (right). Circles with the same color are identified. The extra points of the triangulation
are chosen so that the triangles are close to equilateral where possible. The shaded region in the
right image corresponds to the fundamental domain of the Schottky group in the left image. Its
boundary consist of curves corresponding to the circles and curves corresponding to lines connect-
ing the circles (drawn in gray).

Tori given by Schottky data. For tori, the Schottky data consist of one generator

σ(z)−A
σ(z)−B

= µ
z−A
z−B

(65)

and one pair of circles. To find a uniformization C/Γ is elementary. It suffices to
consider the case where A = B = 0 (and C, C′ are concentric circles around 0 with
radii i and µ . Figure 27 shows two examples where we apply the discrete method
without adding extra points inside the fundamental domain of the Schottky group.
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Fig. 27 Left: Fundamental domains of Riemann surfaces of genus 1 given by Schottky data C, C′,
A, B, µ (see (65)). The triangulations use only points on the circles C, C′. On purpose we have not
chosen concentric circles with center A = B. Right: Representation of the same surfaces as C/Γ

for a lattice Γ . Top: For real µ = 0.3 we get a rectangular lattice. Bottom: µ = 0.08+0.01i yields
a parallelogram.

8.3 Hyperelliptic curves

A hyperelliptic curve is a complex algebraic curve of the form

µ
2 = p(λ ), (66)

where p is a polynomial of degree d ≥ 5 with d distinct roots. For d = 2g+ 2 or
d = 2g+1, the hyperelliptic curve becomes a compact Riemann surface of genus g
after singularities at infinity are resolved. For our purposes, a hyperelliptic curve is
just a branched double cover of the λ -sphere with branch points λ1, . . . ,λ2g+1,∞ if
d = 2g+1 and branch points λ1, . . . ,λ2g+2 if d = 2g+2.

We construct a polyhedral approximation of a hyperelliptic curve in the same
way as for elliptic curves (Section 7.2). We choose points p1, . . . , pn in addition to
the 2g+2 branch points and take the convex hull. We cut the resulting polyhedron
open along edge paths joining pairs of branch points and glue a second copy along
the cuts.

Figure 28 shows uniformizations of the curves

µ
2 = λ

2g

∏
k=1

(
λ − e

ikπ
g
)
. (67)
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for g = 2,3,4 that were obtained this way. The curves are branched at the (2g)th
roots of unity and at 0 and ∞.

Fig. 28 Uniformizations of the hyperbolic curves (67) with genus 2, 3, and 4. The triangulation
of the surfaces is a regular 1-to-4 subdivision of the convex hull of the branch points. Due to the
symmetries of these curves, the fundamental domains are regular hyperbolic 4g-gons. Since the
triangulation is as symmetric as the curves, and because the solution of the discrete uniformization
problem is unique, the fundamental domains of the polyhedral surfaces are also exactly regular
hyperbolic 4g-gons. I.e., any error in the domains is due to numerics, but not to the discretization.

Mapping a polyhedral surface to a hyperelliptic curve. We can also map a tri-
angulated surface of genus g to a branched double cover of the sphere, provided
it is symmetric with respect to a discrete conformal involution with 2g+ 2 fixed
points, which are vertices. In the simplest case, the involution is an isometry. (Com-
pare Section 7.2, where we map flat tori to elliptic curves.) Taking the quotient of
the triangulation with respect to the involution, we get a triangulated sphere with a
discrete conformal structure, which we map discretely conformally to the sphere.
Figure 29 shows an example.

8.4 Geometric characterization of hyperelliptic surfaces

A Riemann surface R of genus g≥ 2 is called hyperelliptic, if one of the following
equivalent conditions is true (and hence all are):

(i) R is conformally equivalent to some hyperelliptic curve.
(ii) R is conformally equivalent to a branched cover of the sphere with 2g + 2

branch points.
(iii) There is a conformal involution τ : R→ R with exactly 2g+2 fixed points.
The involution τ is called the hyperelliptic involution of R. By the Riemann-Hurwitz
formula, the quotient surface R/τ is a sphere.

All Riemann surfaces of genus two are hyperelliptic, but for every genus greater
than two, there are Riemann surfaces that are not hyperelliptic. The following
geometric characterization of hyperelliptic Riemann surfaces is due to Schmutz
Schaller [23, 24].
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Fig. 29 A triangulated genus 2 surface is mapped to a branched cover of Ĉ. The 180◦ rotation
about the horizontal symmetry axis is a discrete conformal involution with 6 fixed points, which
are marked in red, blue, and purple. The texture is a square grid in the plane, pulled back to the
doubly covered sphere by Mercator projection, then pulled back to the surface. Bottom: branched
cover of Ĉ, and a closeup of three branch points.

Theorem 8.2. Let R be a closed hyperbolic surface of genus g. Then the following
statements are equivalent:

(i) R is hyperelliptic.
(ii) R has a set of 2g− 2 simple closed geodesics which all intersect in one point

and which intersect in no other point.
(iii) R has a set of 2g simple closed geodesics which all intersect in one point and

which intersect in no other point.
(iv) R has a fundamental polygon that is a 4g-gon with opposite sides identified

and equal opposite angles.

The fundamental polygon of condition (iv) is symmetric with respect to a 180◦

rotation around its center, which corresponds to the hyperelliptic involution on R.
The 2g+2 fixed points on R are the vertex of the polygon, its center, and the 2g edge
midpoints. The axes of the 2g edge gluing translations all go through the center.
They project to 2g simple closed geodesics on R which all intersect in one point and
intersect in no other point.

8.5 Example: Deforming a hyperelliptic surface

We uniformize a hyperelliptic surface obtaining a centrally symmetric fundamental
polygon with opposite edges identified as predicted by Theorem 8.2. The axes of



Discrete conformal maps 47

the generators meet in one point. Then we deform the surface slightly to a non-
hyperelliptic surface to see how the fundamental polygon and the axes change. The
result is shown in Figure 30.

Fig. 30 Hyperelliptic vs. non-hyperelliptic. Left: Uniformization of a hyperelliptic surface with a
centrally symmetric fundamental polygon. The axes of the generators meet in a common point.
Right: Uniformization of the deformed surface, which is not hyperelliptic. The axes do not meet in
one point.

For this example, we construct an elliptic-hyperelliptic triangulated surface with
additional symmetry. A surface is called elliptic-hyperelliptic if it is conformally
equivalent to a two-sheeted branched cover of the torus.

Take two regular tetrahedra (the faces of which are subdivided several times to
obtain a finer mesh), cut them across pairs of opposite edges and glue them together
to obtain a two-sheeted cover of a tetrahedron branched at the four vertices. Now
choose two paths in one of the sheets that connect the centers of the tetrahedron’s
faces in pairs. Cut the surface along these paths, take another copy of this cut surface
and glue corresponding cuts together to form an elliptic-hyperelliptic surface of
genus three that is a four-fold cover of a regular tetrahedron. The surface possesses
six anti-holomorphic involutions corresponding to the six reflectional symmetries of
the tetrahedron, and three holomorphic involutions corresponding to the rotational
symmetries of the tetrahedron of order two. Each of the holomorphic involutions
has eight fixed points covering the midpoints of a pair of opposite edges. Thus, this
elliptic-hyperelliptic surface is also hyperelliptic.

Figure 30 (left) shows a uniformization of the hyperelliptic elliptic-hyperelliptic
surface. Destroying the symmetry by moving all points of the polyhedral surface
in space by a small random offset destroys the hyperellipticity of the surface, see
Figure 30 (right).
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Fig. 31 Generator labels

T1
T2

T3

T4 T5
T6

Numerical Data. We list the numerical SO+(2,1) matrices of the generators of the
group

〈T1,T2,T3,T4,T5,T6 | T6T5
−1T4T3

−1T2T1
−1T6

−1T5T4
−1T3T2

−1T1 = 1〉 (68)

representing the hyperelliptic elliptic-hyperelliptic surface constructed in this sec-
tion (see Figure 31). The matrices satisfy the relation with error ≈ 10−7.

T1 =

 2.05443154523212 −4.021591426903446 −4.403849064057392
−4.021591427085276 16.338309707059754 16.796236533536394
−4.403849064222335 16.796236533484112 17.392741252301292


T2 =

 7.906334736200989 −6.57792280760043 −10.236171033333449
−6.5779228079025245 7.265127613618063 9.749417813849163
−10.236171033527825 9.749417813638956 14.171462349831586


T3 =

 933.210063638192 509.0929753776527 1063.0407708335915
509.09297492442374 279.0228056502974 580.5414569092936
1063.0407706165242 580.5414573067374 1211.2328692884857


T4 =

 47.8208492808903 21.282776040302117 −52.33345184418173
21.28277609643665 10.67424906068982 −23.788571865092973
−52.333451867010325 −23.788571814871467 57.49509834158029


T5 =

 933.2100574645401 509.09297238055706 −1063.040763978619
509.092972765322 279.02280467565924 −580.5414545474814
−1063.0407641628826 −580.5414542100707 1211.2328621402066


T6 =

 128.62265665383228 90.05086671584104 −157.0093831621644
90.05086668827934 64.5401174556973 −110.78621463208009
−157.00938314635744 −110.78621465448322 192.16277410952506


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8.6 Example: Different forms of the same genus two surface

In this section we present Fuchsian uniformizations of the same Riemann surface
represented in three different ways:
• as hyperelliptic curve µ2 = λ 6−1 (Figure 32),
• as Lawson’s genus 2 minimal surface in S3 [15] (Figure 33),
• and as a surface glued from six squares (Figure 34).
For each representation we choose corresponding fundamental polygons that allow
the comparison of the uniformization:
• an octagon with canonical edge pairing aba′b′cdc′d′,
• an octagon with opposite sides identified, abcda′b′c′d′,
• a 12-gon that is adapted to the six-squares surface.
All data presented in this section is available on the DGD Gallery webpage [26].

Hyperelliptic curve. We uniformize the hyperelliptic curve µ2 = λ 6 − 1 as de-
scribed in Section 7.2. The results are shown in Figure 32.

To understand the cuts on the hyperelliptic surface that lead to the 12-gon in the
bottom row, imagine taking the canonical system of loops in the top row, meeting
at the north pole, and deform them until they also meet at the south pole. This
introduces a second vertex class in the fundamental polygon.

Lawson’s surface. Figure 33 shows Fuchsian uniformizations of Lawson’s mini-
mal surface in S3. The triangulated surface model was kindly provided by Konrad
Polthier [22].

This model of the Lawson surface realizes the hyperelliptic involution as a eu-
clidean rotational symmetry. Its symmetry axis meets the surface in six points. These
fixed points of the hyperelliptic involution correspond to the branch points of the
hyperelliptic curve representation. This allows us to uniformize the model with cor-
responding fundamental domains.

Six-squares surface. Figure 34 (left) shows a surface glued from six squares,
which is conformally equivalent to Lawson’s surface and the hyperelliptic curve.
Edges with the same marking are glued together. We calculate a uniformization us-
ing the triangulation with vertices added in the centers of the squares as shown. An
adapted fundamental domain for this square-tiled translational surface arranges all
squares around a single vertex, see Figure 34 (right). By comparison with Figure 32
(bottom) we see that the vertices in the center of the squares correspond to the branch
points of the hyperelliptic representation of the surface. The black, gray, and white
vertices correspond to the north and south pole of the hyperelliptic representation.
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Fig. 32 Uniformization of the hyperelliptic curve µ2 = λ 6− 1. Left: Triangulated double cover
of the sphere branched at the 6th roots of unity, with the boundary of the fundamental domain
shown in brown and the axes of generators shown in blue. Right: Fuchsian uniformization and
fundamental polygons. Canonical polygon (top), polygon with opposite sides identified (middle),
and 12-gon specially adapted to the six-squares surface (bottom).
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Fig. 33 Uniformization of Lawson’s surface. Left: Triangulated model [22], with the boundary
of the fundamental domain shown in brown and the axes of the generators shown in blue. Right:
Fuchsian uniformizations and fundamental domains. Canonical domain (top), opposite sides do-
main (middle), and 12-gon (bottom).
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Fig. 34 Left: A surface glued from six squares. Right: Fuchsian uniformization and fundamental
domain.
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