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Abstract. Gridshells composed of elastically-bent profiles offer significant cost and
time advantages during the production, transport and construction processes. Nev-
ertheless, the shaping of the initially flat grid also generates important bending
stresses on the structures, reducing therewith their bearing capacity against exter-
nal loads. An optimisation of the grid topology in order to minimise the profiles cur-
vature and, with it, the initial stresses is therefore crucial. In this paper a non-linear
variational method for optimising topologies of elastic gridshells with regular and
irregular meshes is presented. Different case studies of double-curved gridshells
show the advantages and capacity of this method.

1 Introduction

Elastic gridshells make use of the principle of active-bending [Alpermann et al.
2012] since their final geometry results from the elastic deformation of initially flat
grids. This construction principle has the advantage of reducing costs and time dur-
ing the production, transport and construction processes. Nevertheless, the shaping
of the profiles induces significant stresses on the grids reducing therewith their bear-
ing capacity against external loads.

In order to diminish the initial stresses, profiles with low sections and materials
with low modulus of elasticity are usually chosen. However, this leads to a reduction
of the global stiffness of the gridshell which can result in stability problems. With an
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optimisation of the grid topology (orientation and arrangement of the grid profiles) a
minimisation of the profiles curvature can be obtained and the load-bearing capacity
of the gridshells improved [Lafuente Hernández et al. 2011].

In [Kuijvenhoven 2009], M. Kuijvenhoven proposed a design methodology for
elastic gridshells based on particle-spring models. In this method, the gridshell
topology results from an iterative process, where the initially flat grid is progres-
sively approached, vertically, towards the reference surface by shaping springs until
achieving the maximum allowable curvature on the grid. Material and sectional
properties of the grid profiles are given as input information. Dynamic relaxation is
used here to calculate the equilibrium of forces on the grids.

[Bouhaya et al. 2011], Laboratoire Navier of the Paris-Est University, presented
a topology optimisation method based on the geometric compass method, described
by Frei Otto’s Institute for Lightweight Surface Structures in [Otto et al. 1974], com-
bined with genetic algorithms. This method consists on mapping grids, differing on
the orientation and angle between the crossing profiles, on an imposed surface as
in the compass method and selecting the one with lowest curvature using stochastic
genetic algorithms.

In this paper a non-linear variational method for optimising topologies of regu-
lar and irregular elastic gridshells is proposed. The optimisation parameters mesh
size, reference surface and profiles curvature are defined as penalising energies (the
difference to the desired values will be considered) with corresponding weighting
factors. The resulting grid definition is calculated by minimizing the linear com-
bination of these three energies. In the context of discrete differential geometry a
mesh with constant edge lengths is called a discrete Chebyshev net. So we aim
for meshes with the Chebyshev property that approximate a given surface with low
curvature in the parameter curves.

The advantage of this method is that the grid must not stay on the reference
surface and displacements of the grid nodes are possible in all directions, so that a
further optimisation of the grid can be achieved. Moreover, different grid configura-
tions can be calculated by defining priorities between the optimisation parameters.
For example, a higher reduction of the profiles curvature can be achieved by toler-
ating a larger distance from the reference surface or variation on the mesh size (ir-
regular meshes). Several double-curved surfaces with regular and irregular meshes
have been optimised with the variational method and the results presented in the
following chapters.

2 Optimisation

Let M = (V,E,F) be a quad-mesh. The vertices of M are denoted by vi ∈ V , the
edges are eij ∈ E, and the quadrilaterals are denoted by fijkm ∈ F .
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2.1 Energies

We use a linear combination of energies to enforce desired properties on the opti-
mised mesh. Our energy consists of three parts.

E(M) = λ1Eref +λ2Elen +λ3Ecur (1)

The energy Eref penalises the distance of vertices from a reference surface. This
surface can be anything that gives a distance function, e.g., a triangulated surface or
a NURBS-surface. The energy and its gradient are given by

Eref(M) = ∑
vi∈V
〈vi− cpi,vi− cpi〉

∂Eref

∂vi
= 2(vi− cpi)

Here vi is a vertex of the optimised quad-mesh and cpi a closest point on the ref-
erence surface measured from vertex vi. The functional Elen measures edge length
deviation from a given reference length L. Its derivative and energy is given as

Elen(M) = ∑
eij∈E

(‖vi− v j‖−L)2

∂Elen

∂vi
= ∑

eij∈star(vi)

(
2− 2L
‖vi− vk‖

)
(vi− vk)

The sum in the derivative is taken over all edges incident to vertex vi, called the
edge-star of vertex vi. The third energy is a fairing term that penalises a notion
of curvature of curves on the surface. As we only deal with quad-meshes with Z2

combinatorics every interor vertex has four adjacent edges. The energy Ecur and its
gradient is defined as:

Ecur(M) = ∑
vi∈V

(π−∠(ei1,ei3))
2 +(π−∠(ei2,ei4))

2

∂

∂v j
∠(eij,eik) =

−1∥∥eij
∥∥
(

eik− eij

〈
eik,eij

〉〈
eij,eij

〉)∥∥∥∥∥eik− eij

〈
eik,eij

〉〈
eij,eij

〉 ∥∥∥∥∥
−1

∂

∂vi
∠(eij,eik) = −

(
∂

∂v j
∠(eij,eik)+

∂

∂vk
∠(eij,eik)

)
Here and ei1, ei2, ei3, and ei4 are the adjacent edges of vi in cyclic order. An edge eij
is also used in the role of a vector pointing from vertex vi to vertex v j. ∠(eij,eik) is
the angle spaned by the vectors eij and eik From the angle derivatives with respect
to the vertices the gradient can be computed efficiently.

2.2 Initialisation and parameters

The energy E(M) is in general non-convex. That means there can be many local op-
tima, and the solution found by some gradient descent depends on the initialisation.
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Figure 1: Different initialisation shear angles for a conformal remesh. 30◦ left, 0◦ middle,
and −30◦ right.

We propose to use a conformal remesh of the reference surface as initialization. The
conformality of the parameterisation gives us control over the angles between edges
of the quadrilaterals. We can introduce shear to the parameterisation and modify
this angle globally. By this we start with meshes that have almost constant edge
angle (see Fig. 1).

2.3 Implementation

We use the conformal mapping algorithm by [Springborn et al. 2008] to create the
initial mesh. To minimize the energy E(M) we use the non-linear optimization
package PETSc/TAO [Balay et al. 2011; Benson et al. 2007] and its java binding
[Sommer 2010]. We have made good experiences with normalising the energies to
have gradient length one before optimization. Then we start with all λs equal to one
and modify them on the way if needed. If one encounters degenerate configurations
during optimization one can drop the length energy term for a few iterations.

3 Case Studies Regular Gridshells

3.1 The sphere

A simple test of our method is the meshing of a part of a sphere. We will compare
our results with a reference mesh that we obtain from a special smooth parameter-
ization of the sphere. Namely there is a smooth parameterisation of the sphere that
has the property that the lengths of partial derivatives are constant throughout the
surface. That means that for small discretisation steps we can produce meshes with
equal edge lengths from such a parameterisation. The formula for this unit sphere
can be found in [Voss 1881]:

x(u,v) = sn(u+ v,k) · cos(k · (u− v))

y(u,v) = sn(u+ v,k) · sin(k · (u− v))

z(u,v) = cn(u+ v,k).

Here sn and cn are the Jacobi elliptic functions with modulus k. For different k ∈
]0,1[ we get spheres with equal edges lengths and different shapes of parameter
curves (see Fig. 2).
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We measure qualitative curvature of these curves like in our energy Ecur as
(π−∠(e, ẽ))2. Where e and ẽ are opposite edges at a vertex of the quad mesh.
The curvature mean of the parameter curves is decreasing for k approaching zero
(see Fig. 3). Using our optimisation scheme from the previous section we can re-
produce the mesh shapes obtained for different k. The initial mesh is here a sheared
conformal remesh of a part of the unit sphere (see Fig. 4). As the sphere suggests
there might be solutions with low curvature in the parameter curves that are not of
use. In our case two angles of the quadrilaterals tend to zero with decreasing curva-
ture. At the same time the number of edges needed for the mesh is increasing. The
shear angle of the start mesh gives the family of parameterisations for the sphere
and one can easily obtain a good trade-off between number of edges and curvature
of the parameter curves.

3.2 Comparison with the compass method

Three double-curved gridshells with different types of curvature (anticlastic, syn-
clastic and a combination of both) have been analysed with the variational method

Figure 2: Explicitly parameterised spheres with equal edges length l = 0.11. The parameter
k is equal to 0.4 (left), 0.8 (middle), and 0.99 (right).
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Figure 3: The mean value of (π−∠(e, ẽ))2 (blue) on parameter curves of the explicit sphere
parameterization is plotted against the parameter k. The green curve indicates the number of
edges in the corresponding mesh.
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Figure 4: Initialisation meshes (top) and optimised geometries (bottom). The obtained ge-
ometry depends on the initial shear angle and on the boundary shape of the mesh. This leads
to geometries that correspond visually to k ≈ 0.4 (Fig. 2 left), k ≈ 0.9 (Fig. 2 middle). For
an orthogonal init mesh we obtain a solution that is not contained in the family of smooth
parameterizations of [Voss 1881]. The edge lengths are constant and equal to 0.11 in all
solutions.

and the results compared with the grid definitions obtained with the classic compass
method. The anticlastic gridshell is between 5 and 7.5m high, 14 and 15m wide
and 30m long. The synclastic gridshell is between 7.5 and 10m high, 14 and 15m
wide and 30m long. Finally, the gridshell with anticlastic and synclastic curvatures,
analogue to the Downland Museum gridshell in Sussex, Great Britain (2002), has
a height between 7.35 and 9.50m, a width between 12.5 and 16m and a length of
50m.

The mesh size of all three grids is 1m and the starting angle between crossing
directions in the centre of the gridshells is 90◦. In the compass method, the starting
angle corresponds to the angle between the initial curved axes [Otto et al. 1974], and
in the variational method to the angle between crossing segments. A high weighting
factor of the Eref energy has been chosen so that a distance from the reference surface
lower than 1/500 of the span length can be maintained.

In the following pictures the grid topologies resulting from both methods are
shown and compared for the three gridshell structures. The curvatures of the profiles
have been calculated as the reciprocal of the radius of the circles defined by three
consecutive grid nodes. The curvature distributions, calculated by the variational
method in terms of Ecur, have been also illustrated through coloured points. The
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Figure 5: Comparison between grid topologies for an anticlastic gridshell. The grid topology
resulting from the compass method presents extreme curvature values (large red nodes) on the
corners of the lateral edges. The configuration obtained with the variational method shows a
more homogeneous curvature distribution and lower curvature values (smaller nodes).

size of the points is proportional to the curvature. The maximum and minimum
curvatures correspond to the red and blue colours, respectively.

On the case of the anticlastic gridshell (see Fig. 5), the main difference between
the grid topologies is located on the corners of the lateral edges. There, the topol-
ogy resulting from the variational method tends to go more transversally to the front
sides. Also there, the critical curvature of the grid given by the compass method is
to be found. The variational method provided a grid topology with a more homoge-
neous curvature distribution and a maximum curvature value reduced to 87%.

On the case of the synclastic gridshell (see Fig. 6), slight differences can be
found on the whole lateral sides between the grid topologies obtained with both
methods. The grid configuration given by the compass method presents extreme
curvature values on the corners of the lateral edges and on the gridshell crown. The
variational method provided a grid configuration with lower curvature values on the
top and higher on the bottom of the gridshell, the maximum profiles curvature could
be reduced to 90% compared to the compass method.

Figure 6: Comparison between grid topologies for a synclastic gridshell. The grid topology
resulting from the compass method presents again extreme curvature values (large red nodes)
on the corners of the lateral edges. The configuration obtained with the variational method
owns lower maximum and mean curvature values.
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On the case of the gridshell analogue to the Downland Museum (see Fig. 7),
differences between the grid topologies increase when approaching to the face sides.
In both methods, higher curvature values are to be found on the crowns and lower
on the valleys. By the grid resulting from the variational method, extrem curvature
values are less concentrated as in the compass method configuration. The maximum
profiles curvature could be minimized to 88%.

Figure 7: Comparison between grid topologies for the Downland-like gridshell. In both
methods, higher curvature values are located on the crowns (red nodes) and lower on the
valleys (blue nodes). With the variational method, a higher distribution of the extreme profiles
curvatures could be obtained.

With the variational method, grid topologies with lower and more homoge-
neously distributed profiles curvatures than by the compass method could be ob-
tained. A further optimisation could be achieved by using another starting mesh
with different edge angles, by tolerating a higher distance from the reference sur-
face or by allowing variation on the segment lengths. In the following chapters the
weighting factors of the it reference surface and it segments length energies have
been minimized in order to achieve a higher reduction of the grid curvature.

3.3 Further optimisation by allowing more distance to surface reference

The anticlastic, synclastic and Downland-like gridshells have been further optimised
by reducing the weighting factor of the reference surface energy and with it allowing
a spacing between grid and target surface up to 0.6 m. Depending on the curvature
distribution, the grids have been deformed above or below the reference surface.

On the case of the anticlastic gridshell, the corners of the lateral sides deform
outside reducing here the maximum curvature values up to 45% and obtaining a
more homogeneous distribution on the centre of the gridshell. The mean curvature
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Figure 8: Deformation of the grids by allowing more distance from the reference surface

of the profiles could be reduced up to 51%. By the synclastic gridshell, the lateral
edges tend to distort outwards in the middle and the crown of the grid slightly up-
wards. The maximum and mean profiles curvatures were reduced up to 79% and
78%, respectively. By the gridshell with anticlastic and synclastic curvatures, the
crowns deform inwards and the valleys outwards getting a flatter surface. The max-
imum and mean curvatures of the profiles could be reduced here up to 76% and
64%, respectively (see Fig. 8).

The following diagram (Fig. 9) outlines the optimisation results achieved with
the variational method in comparison to the compass method. The maximum and
mean curvatures are illustrated for the three gridshells. The colour of the bars rep-
resents the distance from the reference surface. Generally, a higher reduction of the
mean curvature is achieved, as the energy Ecur to be minimised corresponds to the
sum of all curvature values.

4 Case Studies Irregular Gridshells

4.1 Further optimisation allowing variation on the segments length

A further optimisation can also be achieved by allowing the distance between grid
nodes to vary, reducing thus the curvature on the grid locally and globally. A spheri-
cal calotte of 15m diameter and 10m height has been firstly optimised, with constant
segment length (regular gridshell) and a starting angle between profiles of 67.5◦, and
afterwards by letting the segment lengths progressively differ (irregular gridshell).

On the case of the calotte with regular mesh, due to the characteristic polar sin-
gularities of the spheres, strong local concentrations of curvature can be observed.
By letting the mesh size vary, the segment lengths become shorter on the poles and
the also typical alignment in S of the grid tends to disappear (see Fig. 10).

4.2 Practical application: The Flying Dome

Elastic gridshells offer great advantages on temporary structures since the initially
straight and afterwards elastically shaped profiles composing the grid allow rapid
and cost-efficient production, transport and erection processes. For a temporary
hanging 3D Projection Hemisphere (Flying Dome) of 10m diameter, an irregular



E. Lafuente Hernández, S. Sechelmann, T. Rörig and C. Gengnagel

Figure 9: Comparison of the maximum and mean profile curvatures of the anticlastic, syn-
clastic and Downland-like grid topologies resulting from the variational and compass meth-
ods

elastic gridshell has been designed (see Fig. 11). The project is a cooperation be-
tween the UdK Berlin, the TU Berlin, the Fraunhofer Institut FIRST and industrial
partners and is planned to be built in Berlin in October 2012.

The structure consists in a hybrid construction composed of an irregular elastic
gridshell between a double-layer membrane stabilized by underpressure (vacuum)
of 0.08mbar. The profiles of the gridshell are made of GFK and have a tubular
section of 20mm diameter and 3mm thickness.A third layer of profiles assures the
bracing of the grid and activates its shear-bearing capacity. A PVC-coated polyester
fabric and a PVC projection foil have been planned for the outer and inner mem-
branes, respectively. The extremities of the bent profiles are fixed on a steel box
ring of 100x100x4mm. The hemisphere hangs from the roof through four cables of
6mm diameter and is horizontally stabilized by other four cables of 3mm diameter.
The total weight of the structure is approximately 1.3 tons.
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Figure 10: Optimisation of a spherical calotte with regular and irregular meshes. With a
maximum variation of the segment length of 0.40m (middle) and 0.50m (bottom), the mean
curvature of the grid could be reduced up to 83% and 77% respectively.

An irregular mesh was chosen in order to minimise the profiles curvature (the
maximum curvature could be reduced up to 80

Contrary to regular grids, grids with irregular meshes cannot be completely de-
ployed and can only be partially pre-assembled. The two profile layers will be joined
and bent in a progressive process in order not to exceed the maximum allowable
curvature during the erection of the structure. By means of FEA, the assembling
process of the hemisphere has been simulated and the maximum stresses during the
shaping of the grid and by underpressure loading have been controlled (see Fig. 13).

5 Conclusion

A non-linear variational method for optimising topologies of regular and irregu-
lar elastic gridshells is presented in this paper. The design parameters mesh size,
reference surface and profiles curvature are defined as penalising energies with cor-
responding weighting factors. The resulting grid configuration is calculated by a
non-linear algorithm by minimizing the linear combination of these three energies.
The advantage of the variational method compared to other existing ones is that
spacing between grid and target surface can be allowed and displacements of the
grid nodes are possible in all directions, thus a further optimisation of the grid topol-
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Figure 11: Front view and renderings of the Flying Dome

Figure 12: Physical modelling of the Flying Dome to analyse the visual effects of the irreg-
ular mesh

ogy can be achieved. Moreover, by defining different priorities between the design
parameters through the energy weighting factors, diverse grid configurations can be
generated and the resulting gridshell design can be adapted to specific structural and
architectural requirements.
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Figure 13: Simulation of the erection process and loading of the Flying Dome and analysis
of the maximum stresses by means of FEA
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