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Abstract. We present a new method to obtain periodic conformal parameterizations
of surfaces with cylinder topology and describe applications to architectural design
and rationalization of surfaces. The method is based on discrete conformal maps
from the surface mesh to a cylinder or cone of revolution. It accounts for a num-
ber of degrees of freedom on the boundary that can be used to obtain a variety of
alternative panelizations. We illustrate different choices of parameters for NURBS
surface designs. Further, we describe how our parameterization can be used to get
a periodic boundary aligned hex-mesh on a doubly-curved surface and show the
potential on an architectural facade case study. Here we optimize an initial mesh in
various ways to consist of a limited number of planar regular hexagons that panel
a given surface.

Figure 1: Outline of the method: For a cylindrical NURBS surface (top-left) we create a
seamless periodic conformal parameterization (top-right). A new mesh (bottom-left) is then
rationalized and the panels are optimized for quantized regular hexagons (bottom-right).
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Figure 2: Flow diagram of the algorithms described in this paper. From a NURBS surface a
triangle mesh is created. The parameterization part is described in Section 3. A pattern-mesh
is created using this parameterization. The creation and optimization of panels is described
in Section 5.

1 Introduction

The panelization of surfaces remains a challenge in architectural design. CAD soft-
ware such as Rhino, delivers powerful NURBS surface modelling to the designer.
Their ease of use have made them a de facto standard for the design of freeform (and
other) shapes in architectural design especially building envelopes and facades.

The scale of buildings introduces challenges to surface-based modelling strate-
gies: The large scale of building elements demands that they are divided into smaller
elements. The cost of material and labor, standardized production lines, green build-
ing concepts, availability and redundancy during construction periods demand for
a high degree of similarity of these elements. Yet, the inherent UV subdivision of
NURBS surfaces offers limited control over the layout, shape and configuration of
the panels. While strategies for the controlled and careful creation of freeform sur-
faces have been presented (see [Glymph et al. 2004]) and realized, the tiling of true
freeform surfaces through alternative algorithms is still a challenge.

The quality of a surface panelization solution can be defined in various ways.
From an aesthetic point of view the shape of individual elements is important.
Further there are global conditions such as alignment with surface boundaries and
smooth transition of element shape. From the standpoint of fabrication, the elements
should be repetitive. The contributions of this paper are:

• Periodic discrete conformal parameterization: We present an algorithm
that maps a triangle mesh with cylinder topology conformally to a cylinder or
a cone of revolution. This allows us to obtain seamless patterns on surfaces.
It is a generalized version of the discrete conformal parameterization scheme
described by [Springborn et al. 2008].

• Regular elements: We show how the periodic discrete parameterization can
be used to construct a panelization of the given periodic surface into a small
number of repeating regular elements.

• Applications to architectural design: We present a case study that initiated
the development and where the described methods have successfully been
applied in the architectural design context.
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Figure 3: State of the art unroll methods can create patterns on a closed surface. The
ApplyCrv command of Rhinoceros produces boundary alinged periodic patterns but in-
troduces unacceptable non-isotropic stretch (left). The SquishBack method creates suffi-
ciently regular elements but does not respect the periodicity of the surface (middle). Non-
periodic conformal maps align with the boundary of a cut surface. Along the cut the map is
not continuous (right).

The article is organized as follows: Section 2 describes various parameterization
schemes available to architectural geometers. We briefly discuss the shortcomings
of current methods and explain how we adress them with our method. Section 3
introduces the concept of periodic discrete conformal parameterizations. See Fig-
ure 2 for a schematic view of the proposed method. In Section 4 we present a case
study that led to the development of this work. Section 5 deals with the optimization
of panels to meet requirements arising during the case study. We give implementa-
tional details in Section 6 and close with an outlook on further research.

2 Related Work

In this section we will review different methods used to unroll/parameterize sur-
faces that are accessible in the architectural design process on the example of
Rhinoceros3D and 3rd party plugins. All available tools lack at least one of the
key features of the proposed method:
• Conformality of the mapping avoids non-uniformly stretched panels
• Periodicity of the parameterization is needed to layout panels seamlessly on

the surface
• Boundary alignment avoids irregular cutting of panels at the boundary of the

surface

Rhinoceros CreateUVCrv/ApplyCrv. A NURBS surface is naturally equipped with
a parameterization, i.e., a UV mapping from a rectangle domain to the surface.
For the surface of Figure 1 such a map can be used to project a pattern from this
rectangle to the surface (ApplyCrv in Rhinoceros). The pattern can be constructed
periodically as it is defined in the UV domain of the surface. However, in general
this method does not produce satisfactory results in terms of quality of elements
for complex freeform surfaces. The UV parameterization is not conformal and thus
introduces non-isotropic stretch and shear preventing the elements to be regular on
the surface, see Figure 3, left. This limitation exists even for developable surfaces.
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Figure 4: A discrete periodic map from a cylinder to a triangulated surface. On the cylinder
all edges of the triangulation are geodesic arcs. If the cylinder is cut at the vertical orange
path, then it can be unrolled to the plane creating a rectangular domain.

Rhinoceros Squish/SquishBack. The Squish/SquishBack command of Rhino
maps a surface to the plane minimizing the amount of stretch. While this is geomet-
rically not a conformal map it produces acceptable patterns on the surface. It is
however not capable of calculating periodic maps to the surface. Thus it is not
applicable in our situation, see Figure 3, middle.

PanelingTools for Rhino. The paneling tools of Rhinoceros use the UV parameter-
ization of the underlying surface to populate grid-points over the surface. With the
help of such a grid, panels are placed onto the surface, see [McNeel]. The shapes of
the panels depend heavily on the NURBS-parameterization. An example is shown in
Figure 3, left.

Hexagonal tilings. In the architectural context, hexagonal panelizations have been
studied by [Zimmer et al. 2013, Troche 2008] and [Schiftner et al. 2009]. These
aproaches however do not include regularity or special boundary alignment as in-
troduced in the current work. In [Schiftner et al. 2009] the result of the panelization
depends on the choice of an initial triangle mesh that is optimized towards touching
incircles. This allows for a torsion free support structure of a non planar hex-mesh.
Hexagonal tilings for triangulated surfaces also have been studied by [Nieser et al.
2012]. They focus on regularity but not on boundary conditions.

Mesh parameterizations. There are a vast number of parameterization schemes
for meshes. To elaborate on all methods is beyond the scope of this section and
we describe only the most relevant results here. General purpose parameterization
methods for triangle meshes produce high quality quad or hex meshes for unstruc-
tured input data, see for instance [Bommes et al. 2009,Alexa et al. 2000,Springborn
et al. 2008]. They have been used with success in the architectural context, e.g.,
by [Bo et al. 2011] and [Sechelmann et al. 2013].

The basis of our method are conformally equivalent triangle meshes as described
by [Springborn et al. 2008]. The straight forward method to map a surface with this
approach is to cut it open and map it to a rectangle domain. This method yields
boundary aligned conformal maps that however do not match along the introduced
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Figure 5: Periodic domains of parameterization of the surfaces shown in Figure 6. Left:
Map to a cylinder with geodesic boundary curves. Middle: Map to a cone of revolution with
hex-pattern-adapted angle. The domain is a polygon with quantized angles. Right: Isometric
boundary on a cone with hex-pattern-adapted angle. Panelizations created with the help of
these maps are shown in Figure 6.

cut, see Figure 3, right. How to generalize this method to overcome this limitation
is the content of the following section.

3 Periodic conformal parametrization

In this section we describe our algorithm for the creation of periodic conformal maps
for cylindrical meshes/surfaces, i.e., surfaces with the same topology as a cylinder.
First we will review the discrete conformal maps of [Springborn et al. 2008]. Then
we show how it can be generalized to yield periodic maps to cylinders or cones.

A smooth conformal map between two surfaces is a map that preserves angles.
Intuitively, one can think of a conformal map as a map that preserves the shape but
not the scale of small figures. For conformal surface parameterization, one looks
for conformal maps from the plane to a surface and vice-versa. These can be used
to map different patterns onto surfaces in a way that only isotropic stretch/uniform
scaling is applied to the pattern elements. The method described in [Springborn et al.
2008] is a triangle mesh based discretization of conformal maps. For each vertex v
of the surface – interior or boundary – we may prescribe an angle θv that corresponds
to the angle sum of adjacent triangles in the target mesh. Starting from an input mesh
and target angles θv, the method calculates new edge lengths for the triangles of the
target mesh such that the angle sums at the target vertices are as prescribed. This
goal is achieved by minimizing a convex functional. The prescribed angles have
to satisfy a Gauss-Bonnet type condition, i.e., the angles at interior vertices have to
match the angles at the boundary vertices. We will state the condition for the special
cases treated later in the article, see Equation (1).

For the parameterization problem, we want to construct a map from a surface
to the plane. To get a planar target mesh, the target angles have to be set to 2π

for all interior vertices, i.e., the angles of the triangles adjacent to every interior
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vertex sum up to 2π. Thus the computed target triangles can be laid out in the
plane. At the boundaries there is still a certain degree of freedom, which allows
to map the surface to different shapes, e.g., a rectangle or a more general polygon
with prescribed angles. An alternative choice of boundary conditions yields a target
mesh whose boundary edges have the same lengths as the original mesh. Then the
control over the boundary angles is no longer possible.

This method for the parameterization of triangle meshes can be generalized to
triangle meshes with cylinder topology, see Figure 4. Instead of constructing a dis-
crete conformal map from the surface to the plane, we construct a map to a cylinder
or cone, whose image is isometric to a polygonal region in the plane, see Figure 5.
This works with an approach very similar to the previous one. We start with the
definition of a periodic parameterization.

Definition 1 Let M = (V,E,F) be a mesh with cylinder topology and vertices V ,
edges E, and triangles F. Let D⊂C be a region on a cone/cylinder of revolution. A
continuous bijection Φ : D→M is called a discrete periodic parameterization. D is
called the domain of parameterization.

In the latter we always assume that the preimages of edges of M are geodesic
arcs on the cone/cylinder C. For panelization of periodic surfaces we need to make
sure, that different patterns match around the cone or cylinder. This yields certain
restrictions on the cone that serves as domain of parameterization.

Definition 2 Let C be a cone with aperture ϕ

and Φ : C ⊃ D → M be a discrete periodic pa-
rameterization of a triangle mesh M with do-
main D. The map Φ is called triangle adapted
if the cone angle α is a multiple of π

3 and quad-
pattern adapted if it is a multiple of π

2 .

ϕ

1

sin(ϕ/2)

α = 2πsin(ϕ/2)

This definition ensures that either a quad-, triangle-, or hex-pattern fits seam-
lessly onto the surface after parameterization.

3.1 Periodic boundary conditions

If we want to construct periodic conformal maps we are allowed to specify angle
sums θv at boundary vertices. The condition for the sums of boundary angles differs
from the simply-connected case in the following way: The curvature at a boundary
vertex v is given by κv = π−θv, where θv is the angle sum of the adjacent triangles
in the target mesh. For the two boundary loops (v1, . . . ,vn) and (w1, . . . ,wm) we
have:

n

∑
i=1

κvi +
m

∑
j=1

κw j = 0. (1)
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Figure 6: Quantized periodic hexagonal panelizations. Boundary conditions affect the
amount of stretch in the interior of the surface. Top: Hexagonal pattern aligns with the
boundary, a strong condition that produces large deviation of panel sizes. Middle: Map to a
pattern-adapted polygon on a cone of revolution. The pattern contains exceptional points at
the boundary. The stretch is minimized while at the same time the pattern alignes with the
boundary. Bottom: Conformal map with the least stretch in the interior, pattern can be op-
timized to consist of congruent hexagons alone. In each image, panels with the same colors
are congruent. The corresponding domains of parameterization are shown in Figure 5.
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This condition makes sure that the two boundary curves “bend” the same amount
and can hence be wrapped around a cone. We will now show how boundary condi-
tions can be used to construct periodic patterns on the studied models. We start with
a discrete conformal map of the doubly-curved model from Figure 1 to a standard
cylinder.

Straight cylinder. The simplest way to generate a map to the cylinder is to set the
target angles for all boundary vertices to π. Hence the curvatures at the boundary
vertices are zero and the two boundary loops are mapped to “straight” curves. In
this case both angle sums of Equation (1) vanish and the target mesh can be wrapped
around a cylinder, see Figure 5, left. The new edge lengths computed with the
variational principle correspond to the lengths on a cylinder. This cylinder can be
unrolled into the plane preserving angles and lengths. Therefore the two boundary
polygons are mapped to straight lines in the plane. These two straight lines have
to be parallel and of equal lengths. If the lengths of the boundary curves in the
original model differ a lot, then a map to a cylinder induces a lot of conformal
stretch. This stretch can be reduced by specifying special boundary conditions for a
parameterization on a cone of revolution.

Cone of revolution. As long as Equation (1) is satisfied we obtain a map to a gen-
eral cone of revolution. In our case, we require that the periodic parameterization is
adapted to the target pattern. This means that the two sums of Equation (1) need to
be (the same) multiples of π

3 (triangle or hex) or multiples of π

2 (quad). We present
two methods to achieve this requirement: a uniform distribution and a concentration
of curvature.

If the boundary of the mesh should align with the pattern, then boundary angles
need to be quantized, i.e., multiples of π

3 or π

2 need to be chosen as target angles. In
Figure 5, middle, three vertices of the top and bottom boundary curve were manually
assigned to 4

3 π and 2
3 π, respectively. All other boundary angles are set to π, i.e.,

straight. Such a map can be used as a starting point to obtain a tesselation with
quantized hexagons as described in Section 5.

It is known that a discrete confomal map that does not change the lengths of the
boundary edges exhibits the least stretch in the interior of the surface. To obtain such
a parameterization we first construct a periodic conformal mapping onto an arbitrary
cone such that the lengths of the boundary edges are equal. The resulting angle sums
at boundary vertices of the target mesh determine the cone angle ϕ of the map. The
cone angle of a pattern adapted periodic parameterization is the closest multiple of
the desired quantization. We distribute the difference to the closest quantized angle
uniformly to the individual boundary vertices and recompute the map with these
angle conditions. The obtained map is periodic and exhibits the lowest stretch of all
periodic conformal maps (see Figure 5, right).

Design and structural opportunities. Opposed to achieving a homogenous pattern
distribution, as described previously, it is also possible to use special boundary con-
ditions to support structural purposes or design requirements. If one aims for a
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Figure 7: A periodic conformal map onto a cylinder with special vertices creates the oppor-
tunity to incorporate entrances (left) or concentration of support structure (right).

panelization with boundary aligned patterns, then the target boundary angles must
be quantized.

To include entrances in a facade it is possible to incorporate special boundary
conditions. An example with special boundary vertices with domain angles 4

3 π and
π

3 is shown in Figure 7, left. In the remeshed surface, the lower boundary curve
bends inside at the vertices with angle 4

3 π around the vertex with angle π

3 . This
incorporates a natural entrance into the facade.

Another effect of such angle conditions is a densification of the pattern at the
vertices with small angles. Such a concentration of elements can be used to enforce
structural properties of a geometry. An example of a diagrid generated with such
boundary conditions is shown in Figure 7, right.

4 Case Study: Hexagonal surface panelization

Here we present the findings of a first case study, where the method of discrete
conformal mappings was utilized for a real-world project. In this case study, a
facade design, important questions concerning panel layout, similarity and therewith
constructability had to be addressed at the early design stage.

Discrete conformal maps were used, as they allow the designer to explore alter-
native surface textures and surface panelizations with great design flexibility. This
distinguishes the method from more constrained modelling techniques [Glymph
et al. 2004]. Through the method of conformal mapping, opposed to naive UV
mapping, the density of the surface panelization varies across the entire surface, yet
the shape of elements does not. This can be used for structural purposes, such as
diagrid layouts, or design driven, such as window distribution, see Figure 7. The op-
timization of the surface panelization towards multiple criteria such as edge length
and planarity was consequential.

For a commissioned competition entry we tested and developed the method of
periodic conformal mappings. The project, which served as a case study, was highly
constrained, as the architects were asked to propose an alternative facade design
for an existing design proposal of a multifunctional exhibition center in China, see
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Figure 8: Rendering of Case Study - A project where the method of conformal mapping was
utilized for the facade design.

Figure 8. The massing was fixed, but there were 2 alternative massing options (1
single curved and 1 doubly-curved envelope) to be explored. Also, the client wanted
a hexagonal tiling on the facade but only had a very limited budget of approximately
200 Euro / sqm for the entire facade including sub structure in mind.

These limitations, in combination with the very short timeframe of 2 weeks for
the entire redevelopment of the facade including a feasibility study drove the de-
velopment of the conformal mapping method. Especially, since existing solutions
such as UV mapping led to unsatisfactory results producing anisotropic stretch and
shear of some regions in the master surfaces. Some specific questions that had to be
addressed for each massing option were:
• How many (different) panels would we need?
• Can we clad the entire surface with planar tiles?
• Can we equalize the edge lengths of each hexagon?
• Can we control the orientation of the panels?
• Can we achieve a regular pattern with a homogeneous visual appearance?

In the end, all the above questions were answered/solved.
The first step of development focused on achieving periodicity across the surface

and alignment with the boundary. While the issue of periodicity directly addressed
the last question, it is strongly related to the others as they could be achieved by
successive optimization steps.

Already during the design phase a fully periodic tiling was achieved. In a follow-
ing step the panels were planarized, grouped by dimension and their edge lengths
were equalized. Finally, a control for the panel orientation based on the tangents
of the NURBS master surface was implemented. This hexagonal pattern served as
a base for the facade engineering team. Due to the high cost demands, a simple
component system that served as a sub-structure for each panel was developed, see
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Figure 9: The data for the component-like construction of each panel was derived from the
mesh.

Figure 9.
Unfortunately the given massing options for the building were not very challeng-

ing in terms of geometry. One massing option was a simple extrusion and the other
had very little distortion. After the successful submission of the project, we decided
to continue the development and test the method of discrete conformal mappings on
more extreme base geometries.

During these tests a Grasshopper plug-in for VARYLAB, see [Sechelmann and
Rörig 2013] has been developed and refined. We focused on tiling surfaces with a
large distortion/stretch and double curvature. The main aim was to tile these surfaces
without distorsion. This led to focus on the boundary conditions. The designer is
now able to choose between an aligned mapping where the tile-pattern aligns with
the underlying surface boundary. The trade-off being, that panels need to vary in
sizes. Or one chooses a “homogeneous tiling”, where all the tiles are the same, but
do not align with the boundary. VARYLAB’s numerous optimization algorithms can
be applied and combined with either of the two approaches, see Figure 6. During
the development, we realized that through singularities and special boundary condi-
tions, one is able to control the density and distribution of the pattern on the surface
and along its boundaries, see Figure 7.

5 Rationalization: Hexagon optimization

Starting from the conformal parameterization we optimize the obtained hex-mesh to
have identical regular hexagons. We use a global optimization approach and define
energies to achieve planarity, regularity, and equality.
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Figure 10: Close-up rendering of facade.

Planarity. The planarity function is a simple adaptation of the usual energy used
to planarize quad-meshes: A quadrilateral {A,B,C,D} is planar if the volume of
the tetrahedron {A,B,C,D} is zero. So if we require the volume of all tetrahedra
spanned by the vertices of a polygon to be zero we obtain a planar polygon. The
planarity energy Epl can easily be expressed in terms of determinants.

Regularity. A regular planar polygon is characterized by having equal edge lengths
and equal angles at all vertices. As for planarity we define an energy that is mini-
mized in case of regular polygons. The interior angle at a vertex of a regular p-gon
is p−2

p π. So an energy Ereg that is minimized for a regular p-gon with vertices
{v1, . . . ,vp} and corresponding angles {α1, . . . ,αp} is

Ereg(P) = λP Eα(P)+µP E`(P) with

Eα(P) =
p

∑
i=1

(αi−
p−2

p
π)2 E`(P) = ∑

(vi,vi+1)

(‖vi− vi+1‖− `P)
2,

where `P is the desired target edge length for the polygon and λP and µP weights
for the different energies. In a first step, the target length can be chosen to be the
average edge length of the polygon or the shortest edge length among the edges to
avoid overlap. Note that, the normalization of the angles already implies planarity
of the polygons. Nevertheless, we consider the planarity energy since it increases
the rate of convergence.

Starting from a cylindrical or conical periodic conformal parameterization we
construct a hex-mesh that may or may not be aligned with the boundary. As a con-
sequence of the conformality of the parameterization the angles of the hexagons are
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Figure 11: Panelization of a doubly curved design alternative of the case study shown in
Figure 8. Left: Unquantized panelization. Right: Quantization to 11 panel sizes with edge
lengths varying from 1.5m to 2m.

almost 2π

3 . In the following we do not work with a water tight mesh any more but
split the surface into individual hexagonal panels. We optimize the edge lengths of
the hexagons to be constant per face using E`. To avoid overlap we choose the length
of the shortest edge of each face as target length. We add the planarity and angle
regularity functionals Epl and Eα to the optimization and obtain planar and regular
hexagons. Each of the hexagons has its own constant edge length. Finally, we can
rationalize the panelization further, by choosing a discrete set of edge lengths as
target lengths for the polygons in the edge length functional E`. Due to the symme-
try of the edge length functional for regular hexagons edge length optimization will
not destroy the planarity and regularity of the hexagons. So it is possible to adjust
the edge lengths using E` only. This quantization process is illustrated in Figure 11.
The used method allows to include additional functionals into the optimization, e.g.,
functionals minimizing the distance to a reference surface or the distribution of gaps
tangent and normal to the surface. We have not yet added these functionals due to
the early phase of the presented project.

The range of lengths obtained depends on the initial hex-mesh constructed on the
chosen target geometry. The effect of the different periodic conformal parametriza-
tions on the quantization is shown in Figures 5 and 6.

6 Implementation

We use the software package VARYLAB, [Sechelmann and Rörig 2013], in com-
bination with Rhino’s Grasshopper to calculate discrete conformal maps to the
cylinder or cone as shown in Figure 5. Figure 12 shows the Grasshopper network
used to connect Rhino and VARYLAB. VARYLAB uses the optimization package
TAO/PETSC, see [Benson et al. 2007,Balay et al. 2011,Sommer 2010], to perform
energy minimization. We calculated the exact gradients of the functionals for the
optimization and used the conjugate gradient method of TAO.
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Figure 12: Grasshopper networks connecting Rhino and VARYLAB. In the first step we
send mesh data to VARYLAB running on the same machine at localhost:6789 (left). In
the second step we collect the result from this VARYLAB instance and create polygons from
the mesh’s faces (right).

7 Conclusion

The collaboration between architect and math department proved to be very satis-
factory for both parties: The architects did provide specific questions related to real
world projects whilst the mathematicians were able to translate these questions into
mathematical formulas and provided meaningful results that could not have been
achieved alternatively. A common design framework such as Rhino and the basic
knowledge of NURBS geometry and modelling techniques proved to be of essential
importance for the successful collaboration between the teams.

As a result of this collaboration, we presented a method for homogeneous pe-
riodic panelization of NURBS surface geometry of cylinder type. A natural future
development is the design of suitable support structures possibly with torsion free
nodes. This can be derived from the panel layout by intersecting the panel planes.
Furthermore the quantization of edge lengths of regular hexagonal panels is not yet
fully explored. A denser distribution of quantized edge lengths in regions with great
edge length variance can possibly improve the layout and number of different pan-
els. For a later stage of the project one could add optimization for the gaps between
the panels, which has not been incorporated yet. It would also be interesting to look
at more extreme examples, even if those might not fit the architectural context.

We also started to look into how patterns can be applied across multiple sur-
face patches, such that the pattern aligns at the crease where the patches meet. This
would necessitate to develop methods for more general mappings and the applica-
tions of multiple boundary conditions; A field that is yet to be developed.

While the method presented does require a certain level of expertise from the
user, we see the potential of this post-panelization strategy of freeform surfaces
in the architectural design process: Opposed to carefully constrained (parametric)
modelling approaches this method allows to realize even distributed, homogenous
panelizations on arbitrary surfaces with cylinder topology at early design stages -
something a lot of designers are interested in.
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