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% DGD Discrete Surfaces

A discrete surface is a collection of triangles equipped with a metric
of constant curvature. They are glued along geodesic edges. Vertices
can have cone-like singularities.
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% DGD Discrete Metrics

Geodesic edge lengths are called a discrete
Euclidean (K=0), hyperbolic (K=-1), or spherical (K=1) metric.
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% DGDConformal Equivalence of Euclidean metrics

A discrete Euclidean metric with edge length /; is discretely

conformally equivalent to the discrete Euclidean metric /71 if theis a
function v : V — R such that for all edges
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&y DD Conformal Equivalence

A discrete Euclidean metric / and a discrete (hyperbolic, spherical)
metric / are discretely conformally equivalent if
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Definition
A discrete Riemann surface is an equivalence class of discretely
conformally equivalent metrics.

The Euclidean conformal invariant is the length cross-ratio defined on
edges. Two discrete Euclidean metrics are equivalent if their length
cross-ratios coincide.
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% DGD Discrete Uniformization

Uniformization Problem

Given a discrete Riemann surface, find a metric of constant curvature
without cone singularities.

As in the smooth case:
> g =1 ~» Euclidean
> g > 1~ hyperbolic
> g = 0 ~~ spherical
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Iy DAD Variational Description

Metrics without cone-like singularities are critical points of Euclidean,
hyperbolic, and spherical functionals. Angles are calculated in the

respctive geometry.
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Optimize the corresponding functional to solve the uniformization
problem.
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% DD Realizations

> g = 1 - Euclidean plane and lattice A, E/A
> g > 1 - Hyperbolic plane and Fuchsian group G, H/G

> g = 0 - Sphere




% DGD Discrete Realizations
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Realizations of discrete metrics without cone-like singularities
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&y DD Examples

> Fuchsian uniformization of elliptic and hyperelliptic surfaces given
as two-sheeted cover of C

> Fuchsian uniformization of Schottky data

> Surfaces with boundary
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Zy DAD Elliptic and hyperelliptic surfaces

> Algebraic description

2g+2

w? = H(z—)\,-)

i=1

> Riemann surface is a two-sheeted cover of C with branch points );

> Use spherical triangulation with 2g + 2 singularities at \; with cone
angle 4.

> Find conformally equivalent hyperbolic metric without cone-like
singularities

> Realization as E/ T or H/G
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% DD Elliptic surface
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branched cover

Riemann surface of genus 1 given by a branched cover of C
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% DGD Hyperelliptic surfaces
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Riemann surface of genus 2 given by a branched cover of C
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&y DD Theorem Hyperellipticity

Theorem

A Riemann surface is hyperelliptic if and only if the axes of the
hyperbolic motions that identify opposite sides of a fundamental
polygon meet in a point.
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Iy DAD Uniformization of Schottky data
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£ DOD Uniformization of Schottky data
> Create triangulation of a fundamental domain with matching

vertices on circles
> find length-cross-ratios on circle edges

> pick a metric from the conformal class
> find conformally equivalent hyperbolic metric without cone-like

singularities
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of Schottky data
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Surface of genus 2 given as C/G and Fuchsian uniformization.
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Surfaces with boundary
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Map boundary components to circles in E, H, or S.
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Genus 0 surface with 3 boundary components and uniformization
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Iy DAD Variational Description

If logarithmic edge lengths \ are variables of the functional then
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Hyperbolic surface with boundary
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Genus 2 Riemann surface with one boundary component and Fuchsian
uniformization
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