Uniformization of Elliptic and Hyperelliptic Curves via Discrete Conformal Equivalence

Stefan Sechelmann

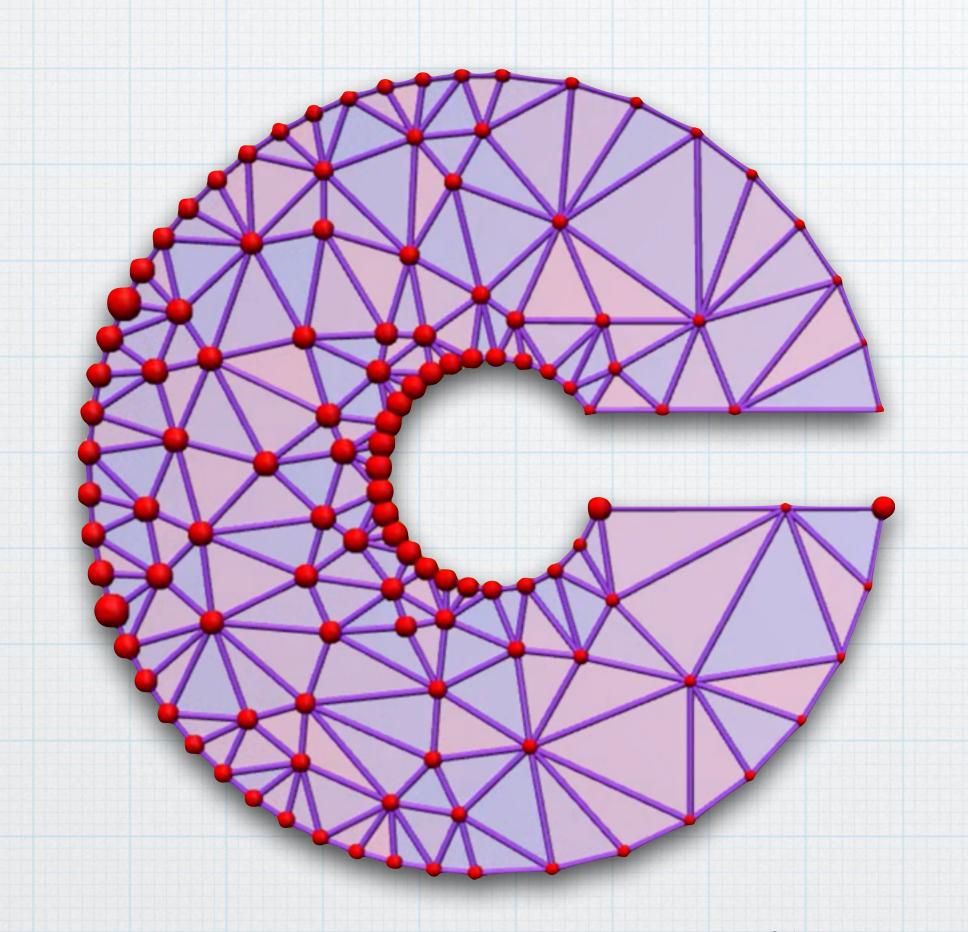
joint work with A. Bobenko and B. Springborn

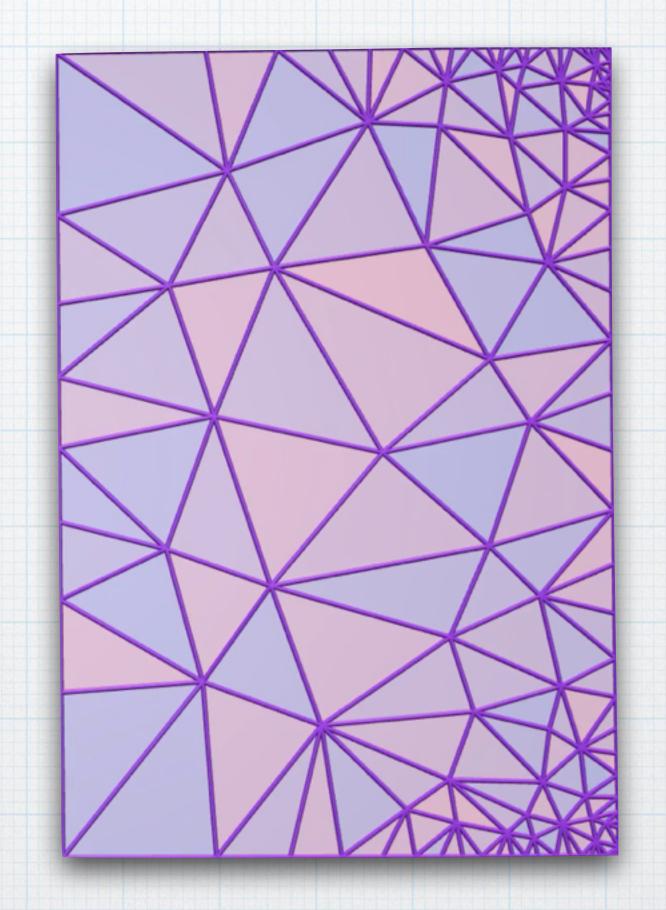
Oberwolfach Januar 2016

Outline

- * Discrete Conformal Equivalence 101
- * Hyperelliptic Curves
 - * Characterization
 - * Examples
- * Elliptic Curves
 - * Convergence
 - ***** Elliptic Functions

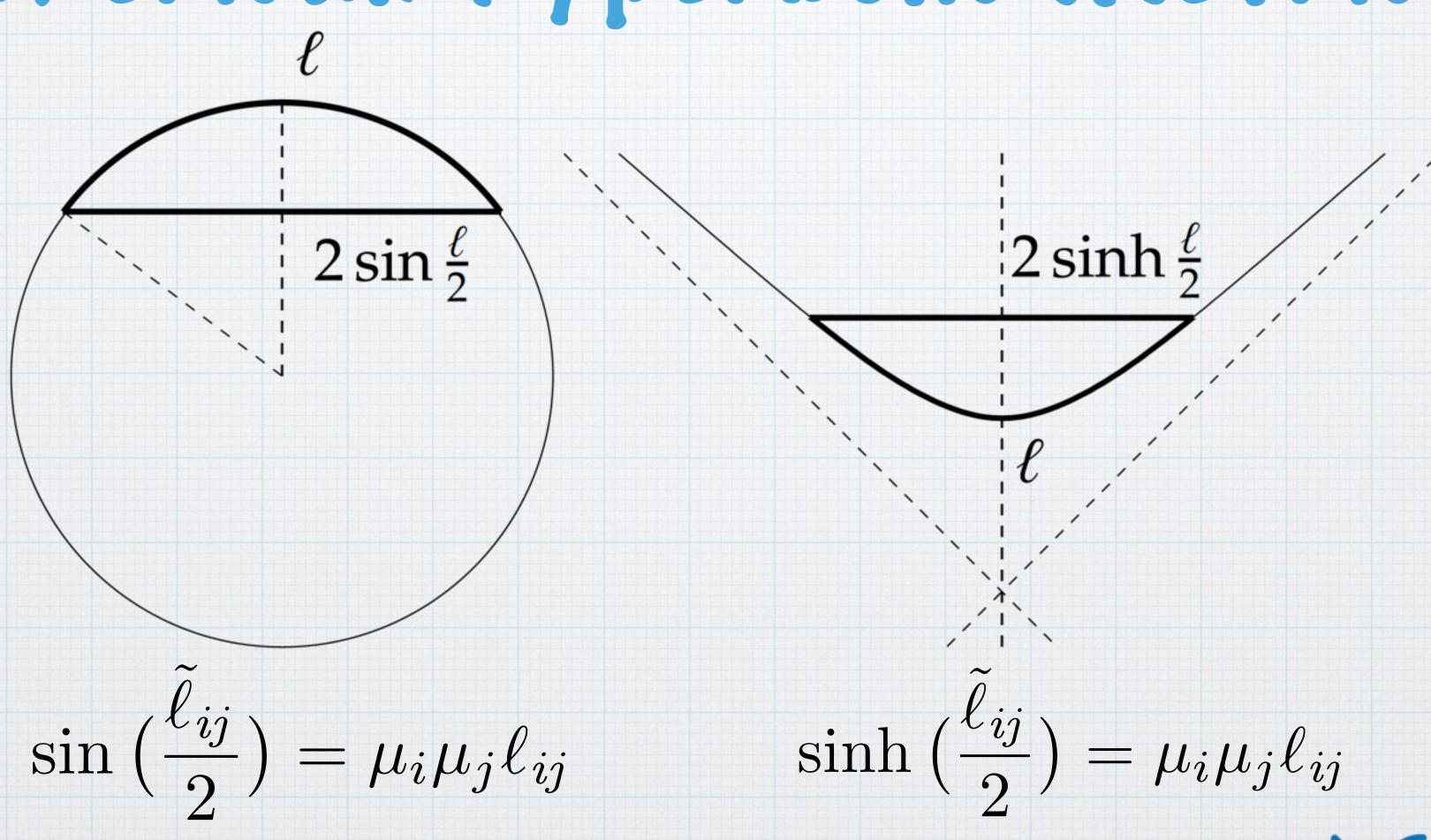
Piscrete Conformal Equivalence





$$\tilde{\ell}_{ij} = \mu_i \mu_j \ell_{ij}$$

Equivalence of Euclidean and Spherical/Hyperbolic Metrics



Mapping Problem

Given Euclidean lengths ℓ_{ij} find new euclidean/hyperbolic/spherical lengths ℓ_{ij} such that

$$\tilde{\ell}_{ij} = \mu_i \mu_j \ell_{ij}$$

$$\sin\left(\frac{\ell_{ij}}{2}\right) = \mu_i \mu_j \ell_{ij}$$

$$\sin\left(\frac{\ell_{ij}}{2}\right) = \mu_i \mu_j \ell_{ij} \qquad \sinh\left(\frac{\ell_{ij}}{2}\right) = \mu_i \mu_j \ell_{ij}$$

$$\sum_{ijk\ni i} \tilde{\alpha}^i_{jk} = \Theta_i$$

Formulas for α depend on the geometry.

Variational Principle

$$\tilde{\ell}_{ij} = e^{u_i + u_j} \ell_{ij}$$

$$E^{\mathrm{euc}}, E^{\mathrm{hyp}}, E^{\mathrm{sph}} : \mathbb{R}^V \longrightarrow \mathbb{R},$$

$$u \longmapsto E^{\tilde{g}}(u)$$

$$\frac{\partial E^{\tilde{g}}}{\partial u_i}(u) = \Theta_i - \sum_{ijk \ni i} \tilde{\alpha}^i_{jk}$$

$$D^{2}E^{\tilde{g}}(u) = \frac{1}{2} \sum_{ijk \in F}^{ijk \ni i} (q_{ij}^{k}(u) + q_{jk}^{i}(u) + q_{ki}^{j}(u))$$

Hyperelliptic Curves

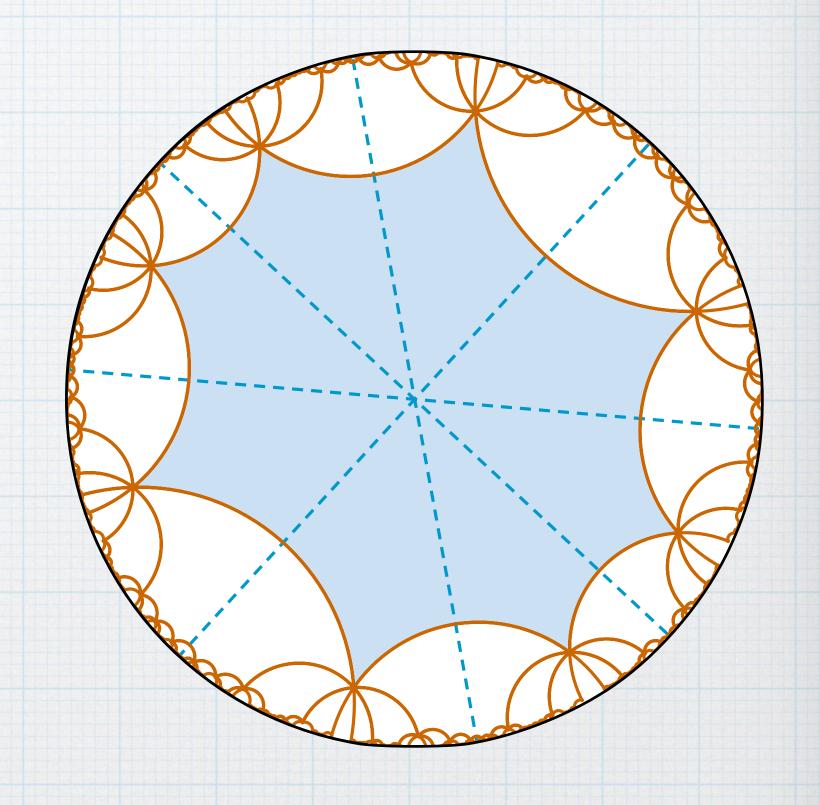
$$\left\{ (\mu, \lambda) \in \mathbb{C}^2 \mid \mu^2 = \prod_{k=1}^{2g+2} (\lambda - \lambda_k) \right\}$$

- 1 dimensional complex submanifold of \mathbb{C}^2
- Conformally equivalent to a 2-sheeted branched cover of $\hat{\mathbb{C}}$ with branch points at $\lambda_1, \ldots, \lambda_{2g+2}$
- A surface that can be realized as 2-sheeted branched cover of $\hat{\mathbb{C}}$ is called *hyperelliptic surface*

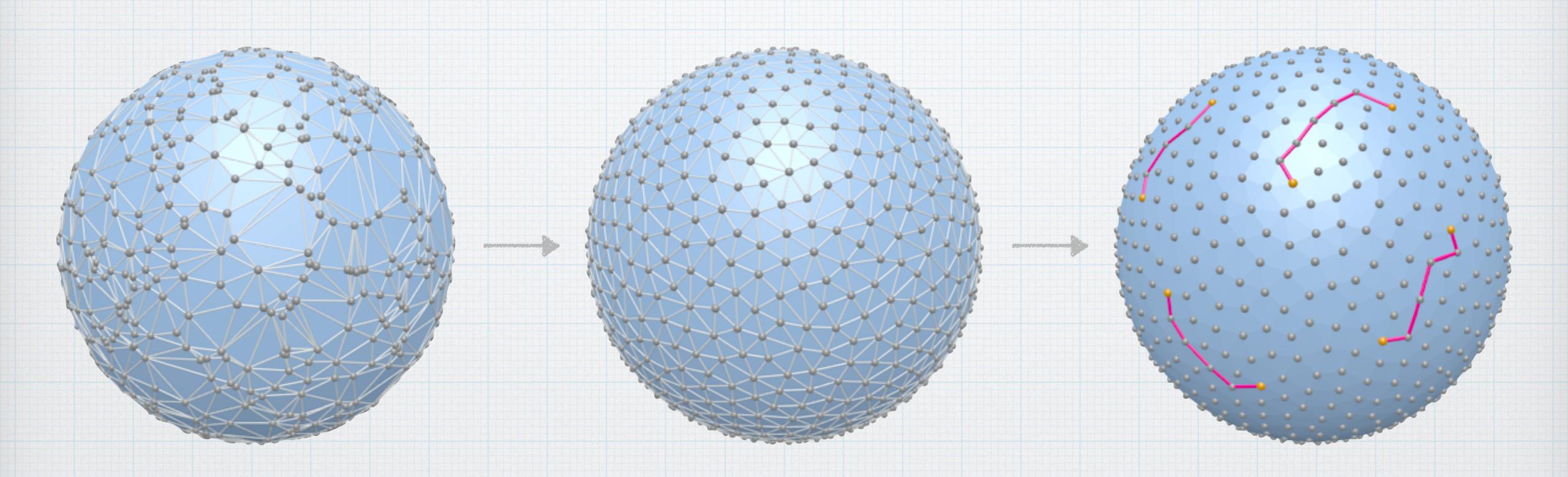
Characterization

Theorem 1 (Schmutz Schaller 1999) Let R be a closed hyperbolic surface of genus g. Then the following statements are equivalent:

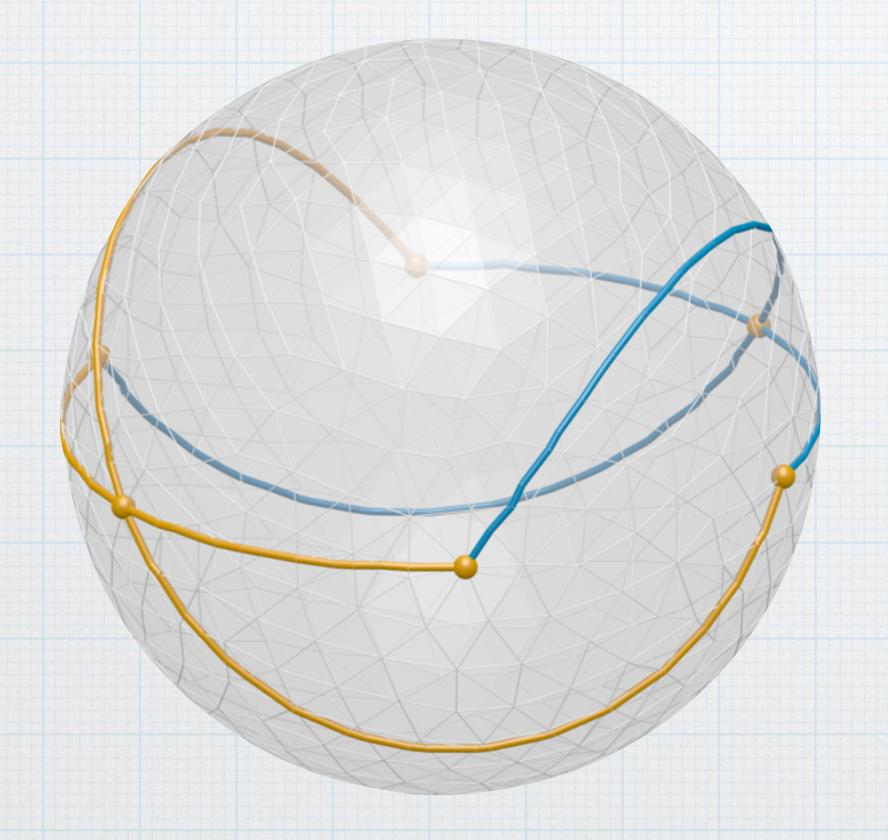
- (i) R is hyperelliptic.
- (ii) R has a set of 2g simple closed geodesics which all intersect in one point and which intersect in no other point.
- (iii) R has a fundamental polygon that is a 4g-gon with opposite sides identified and equal opposite angles.

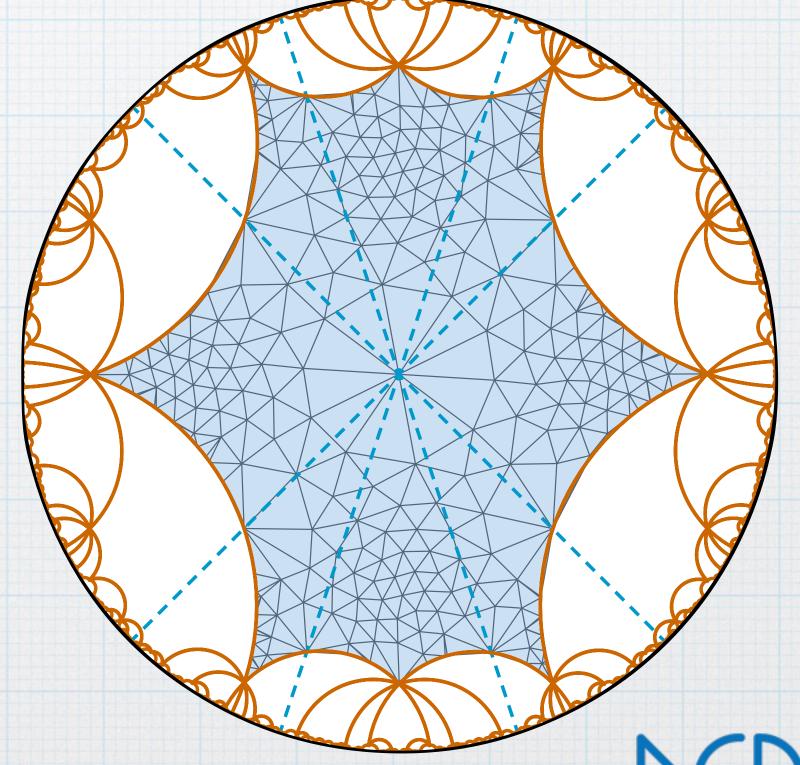


Viscretization



Example
$$\mu^2 = \prod_{k=1}^{6} \left(\lambda - e^{\frac{ik\pi}{3}}\right)$$



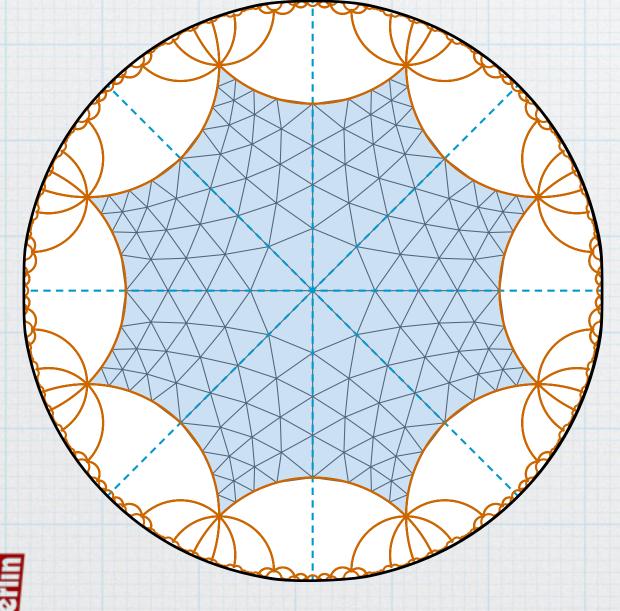


Discretization in Geometry and Dynamics

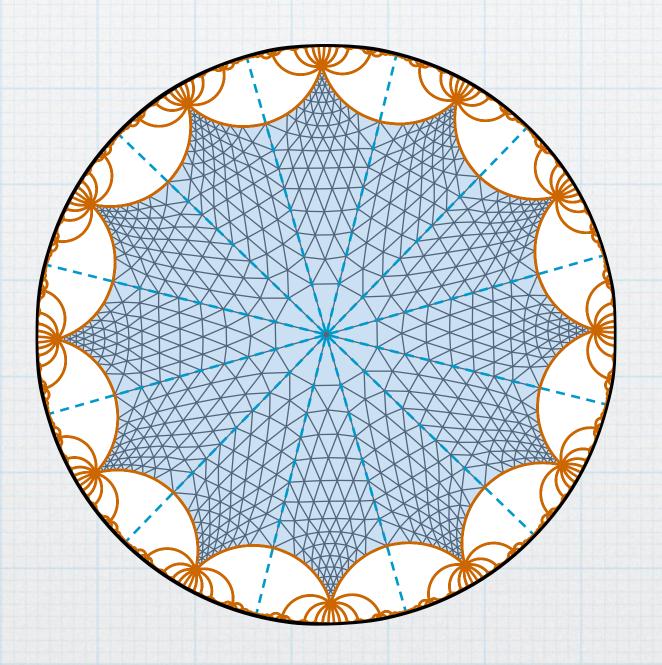
Example: Regular Pomain

$$\mu^{2} = \lambda \prod_{k=1}^{2g} \left(\lambda - e^{\frac{ik\pi}{g}}\right)$$

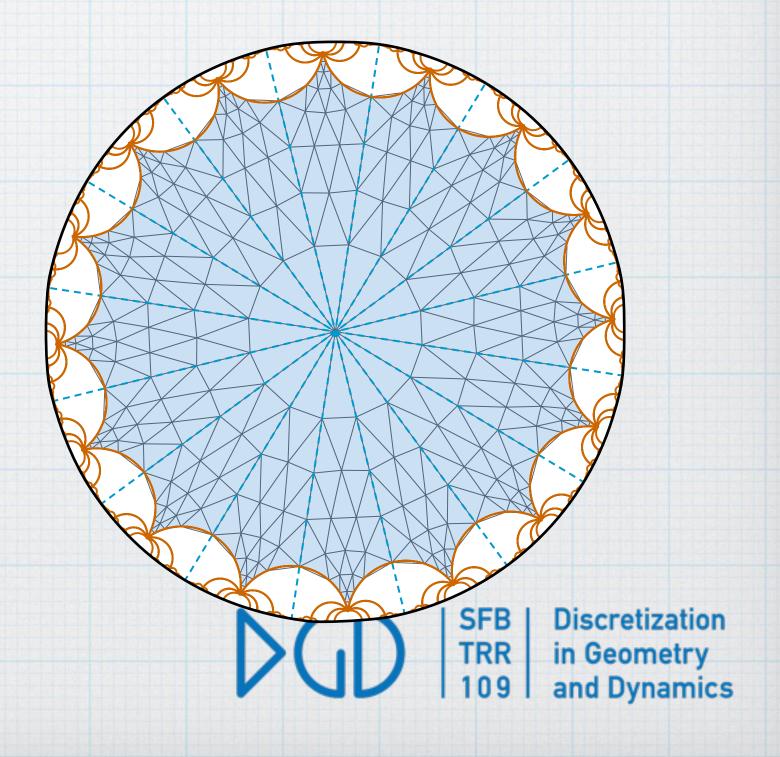
$$g=2$$



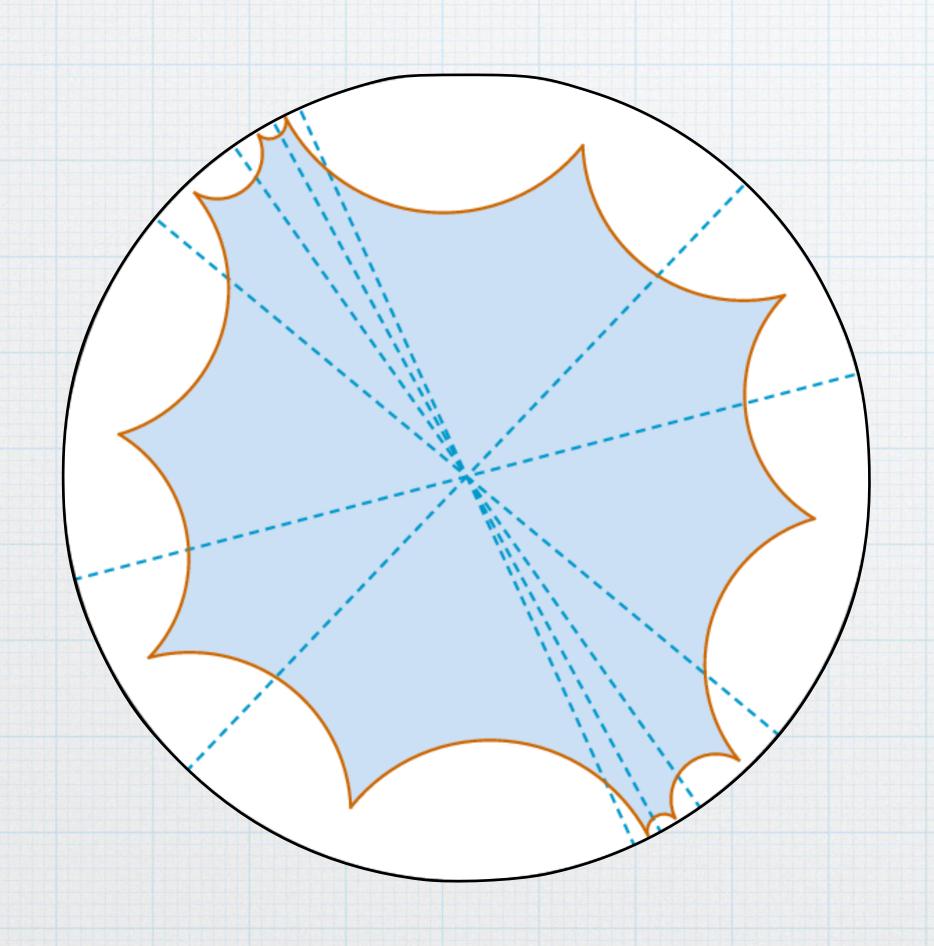
$$g = 3$$

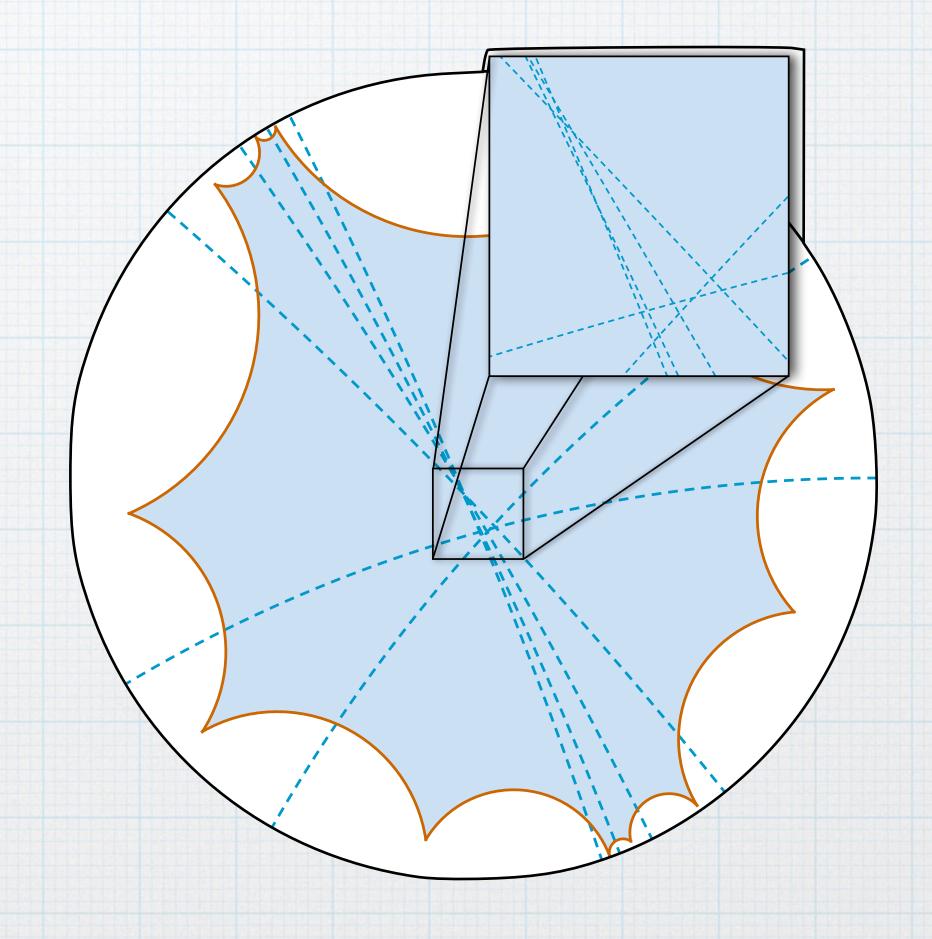


$$g=4$$



Non-Hyperelliptic Test





Elliptic Curves

$$\mu^2 = \prod_{k=1}^4 (\lambda - \lambda_k)$$

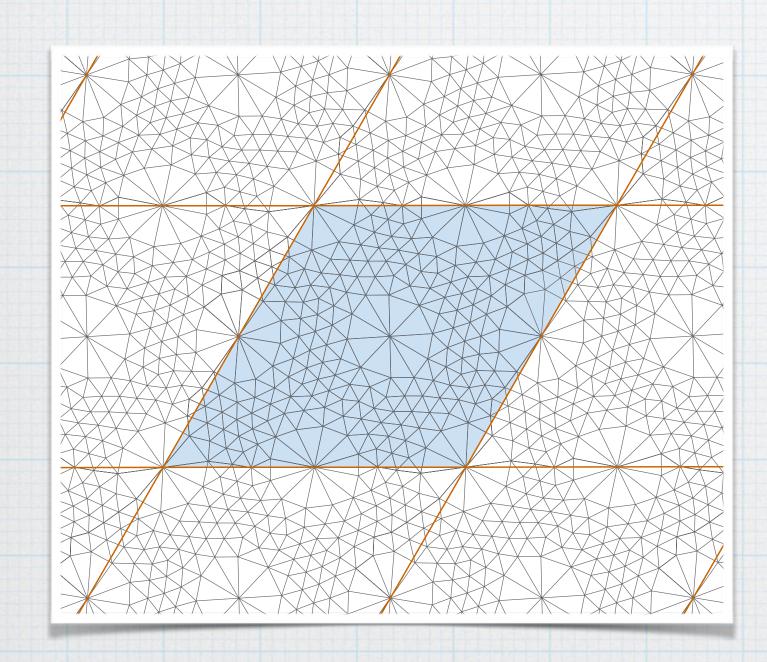
- ullet Use representation as 2-sheeted branched cover of $\hat{\mathbb{C}}$
- Conformal invariant τ can be calculated to high precision from $\lambda_1, \ldots, \lambda_4$
- \bullet Use τ as ground truth in convergence comparisons

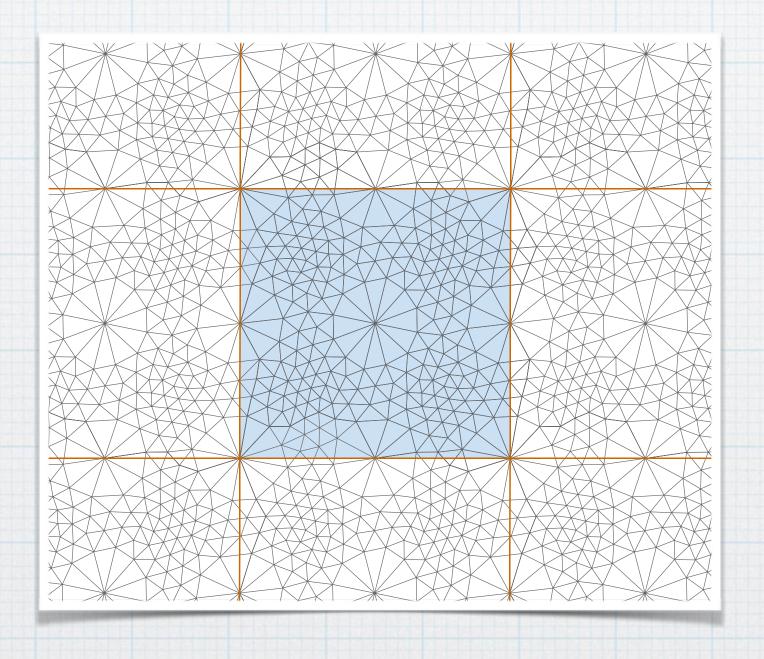
Example

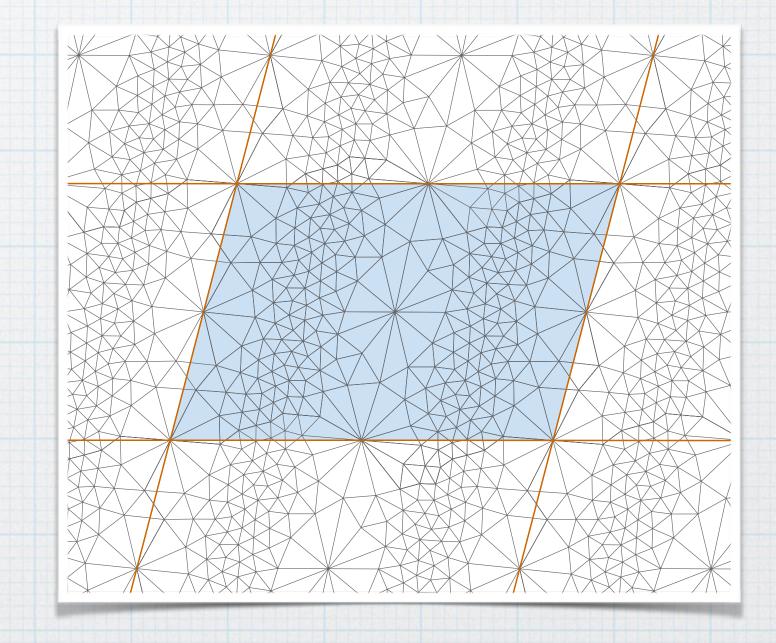
$$\tau = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$

$$\tau = i$$

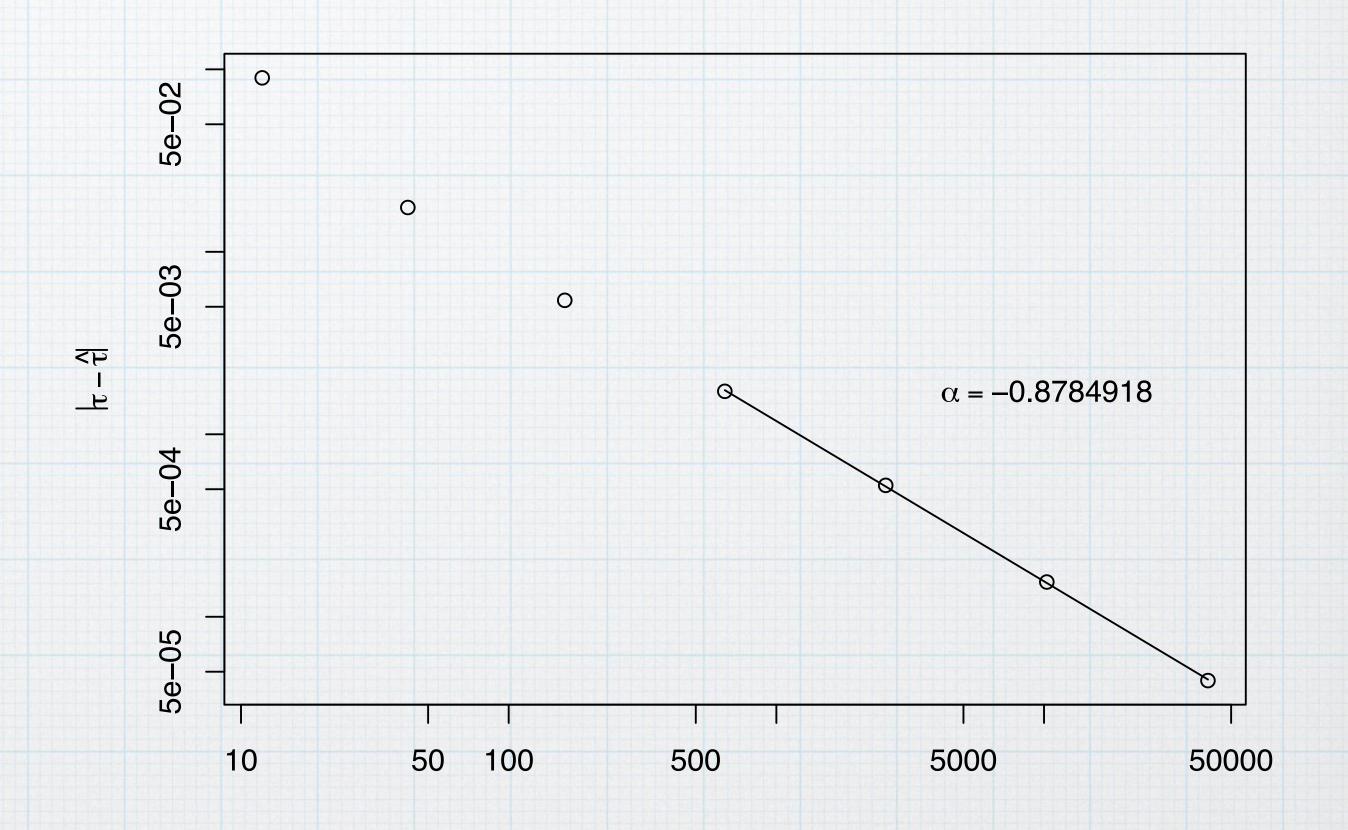
$$\tau = z$$







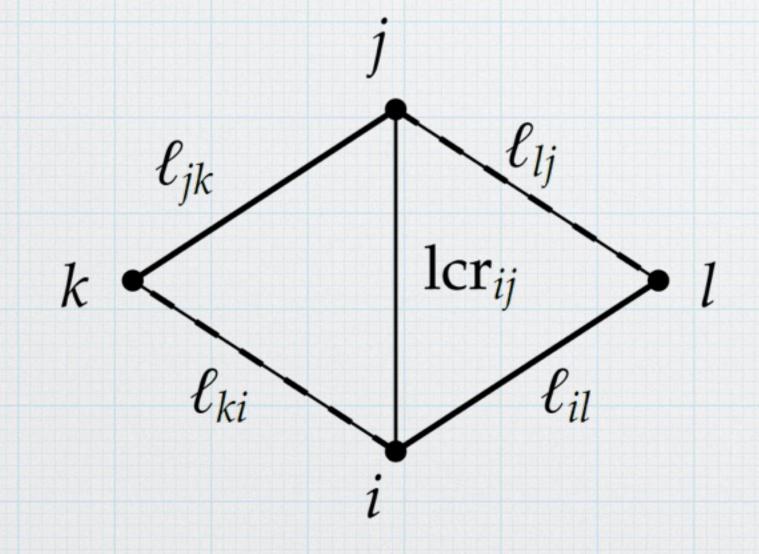
Convergence

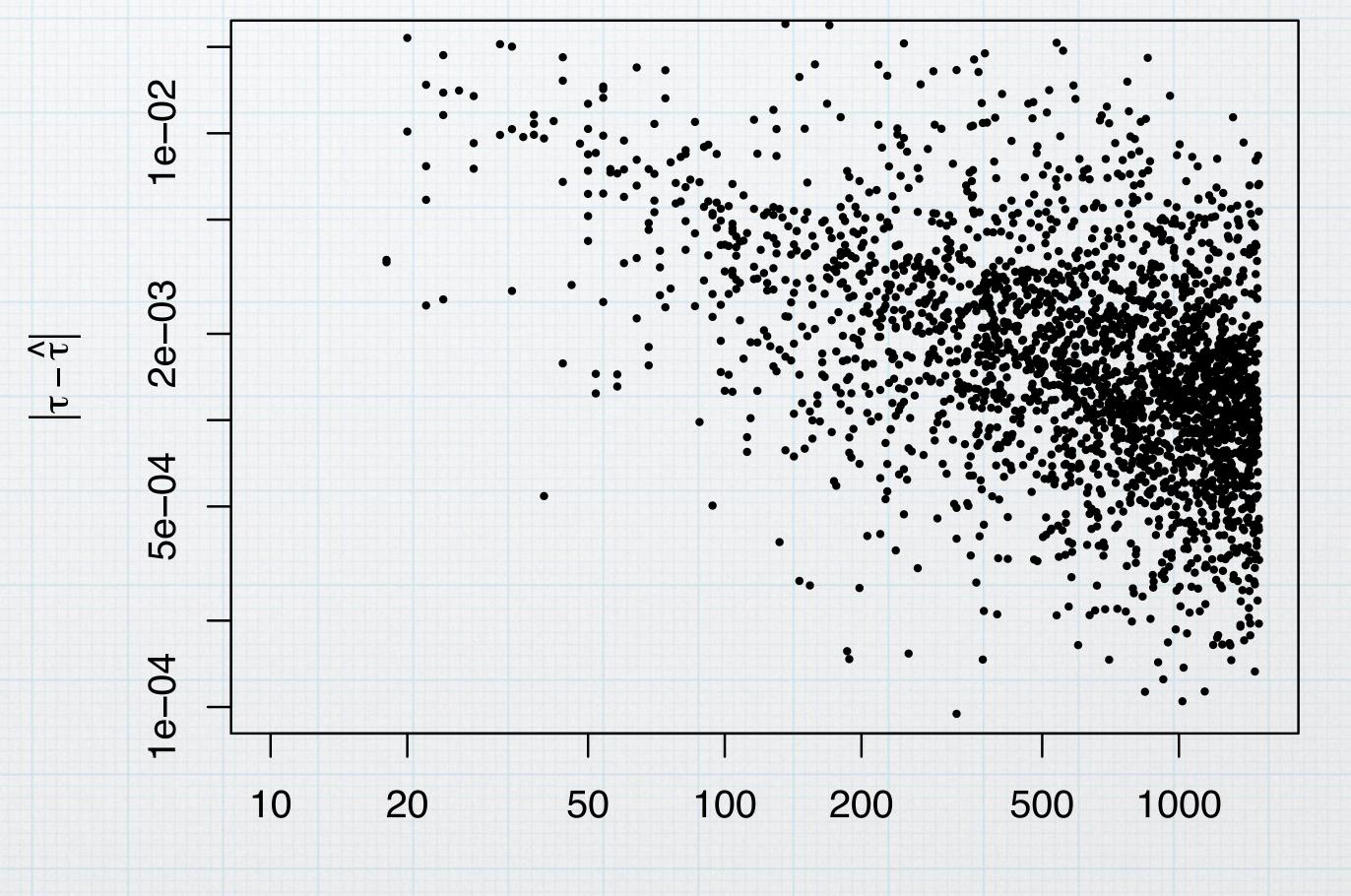


Convergence Behavior

Random Points

$$Q_{ij} := \frac{1}{2} \left(\operatorname{lcr}_{ij} + \frac{1}{\operatorname{lcr}_{ij}} \right) - 1$$

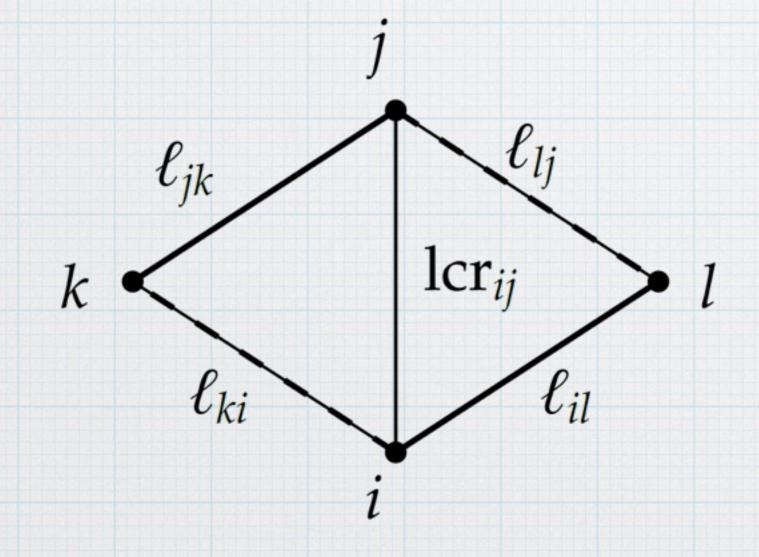


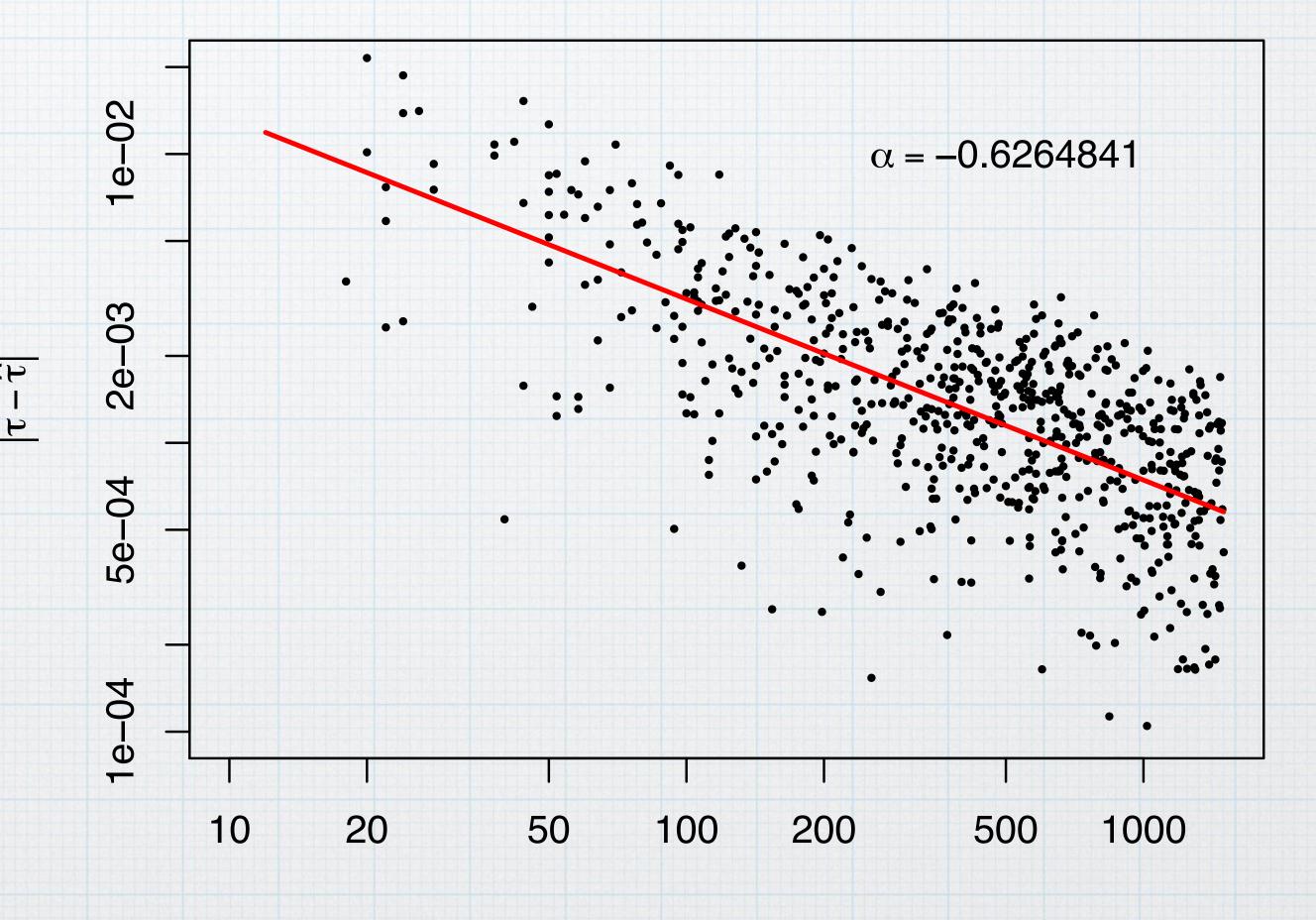


Convergence Behavior

Filtered by Mesh-Quality

$$Q_{ij} := \frac{1}{2} \left(\operatorname{lcr}_{ij} + \frac{1}{\operatorname{lcr}_{ij}} \right) - 1$$

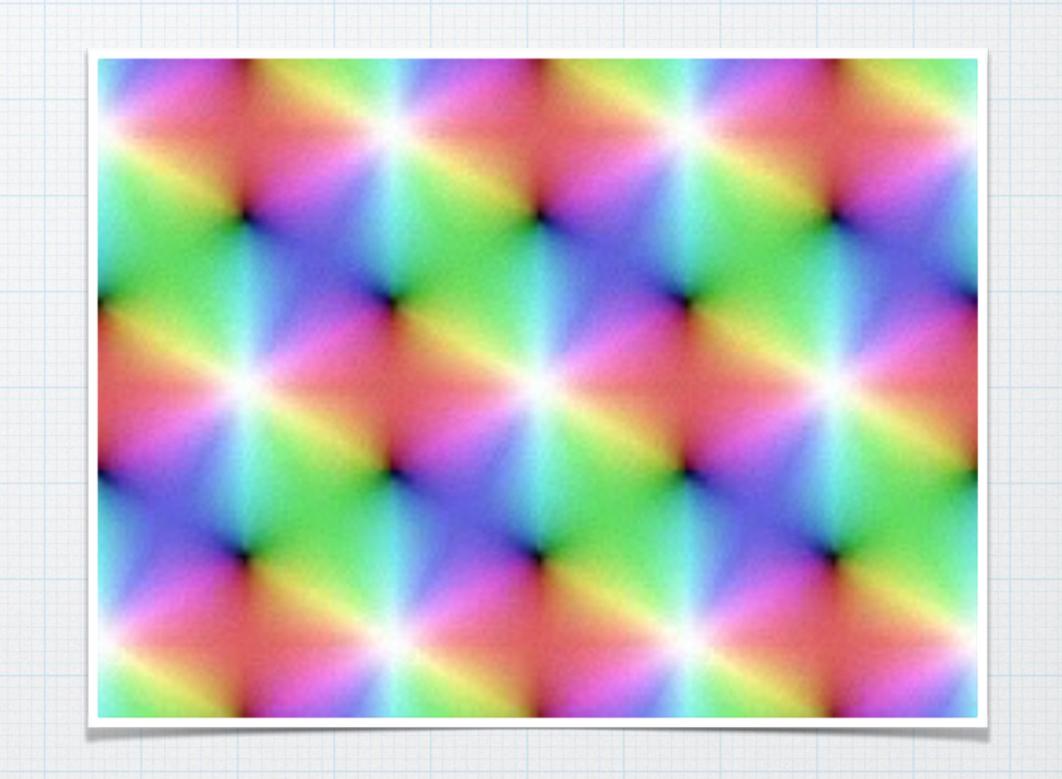




Elliptic Functions

$$\Gamma = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$$

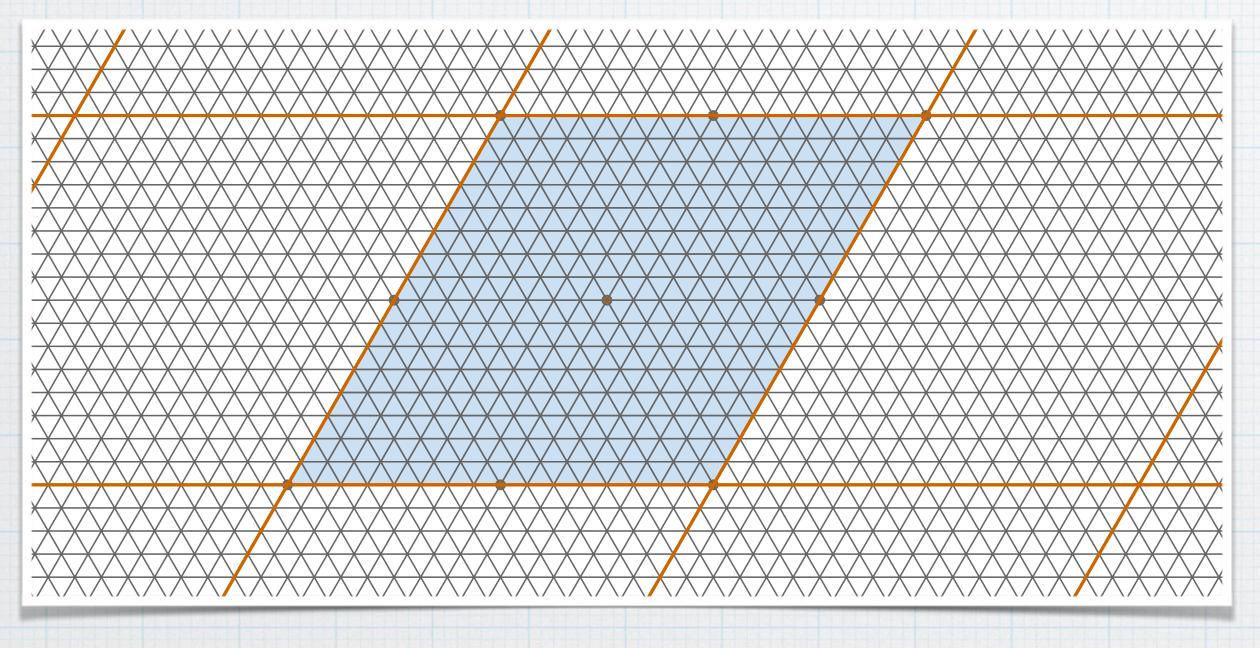
$$\wp(z) = \frac{1}{z^2} + \sum_{\gamma \in \Gamma \setminus \{0\}} \left(\frac{1}{(z - \gamma)^2} - \frac{1}{\gamma^2} \right)$$

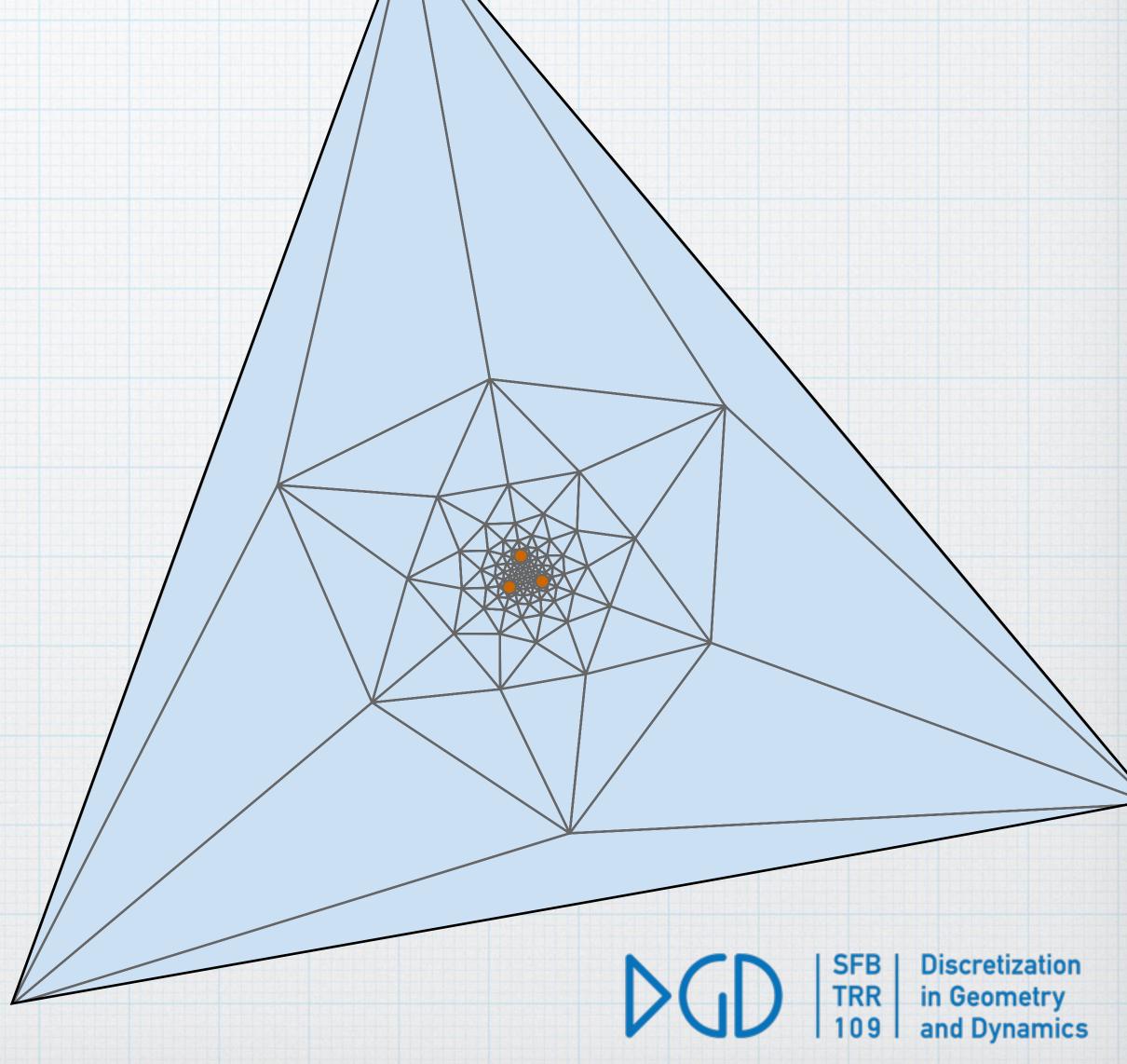


Viscrete Elliptic Functions

$$\Gamma = \mathbb{Z} + \tau \mathbb{Z}$$

$$\tau = \frac{1}{2} + i \frac{\sqrt{3}}{2}$$

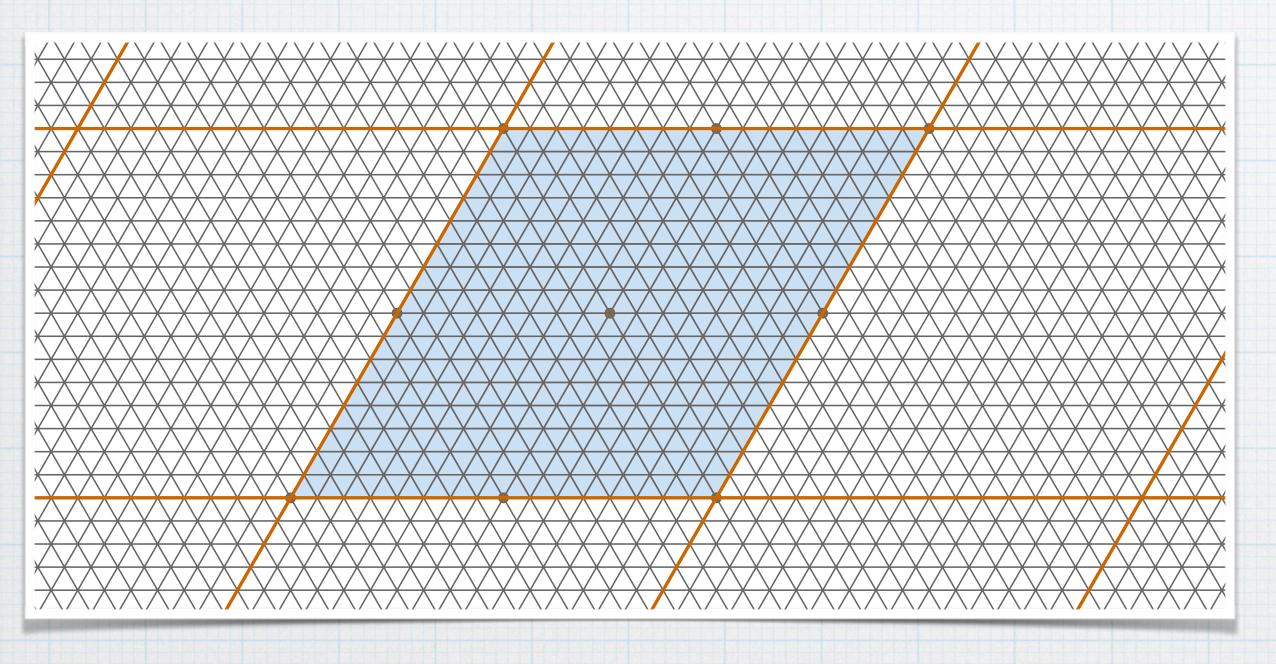


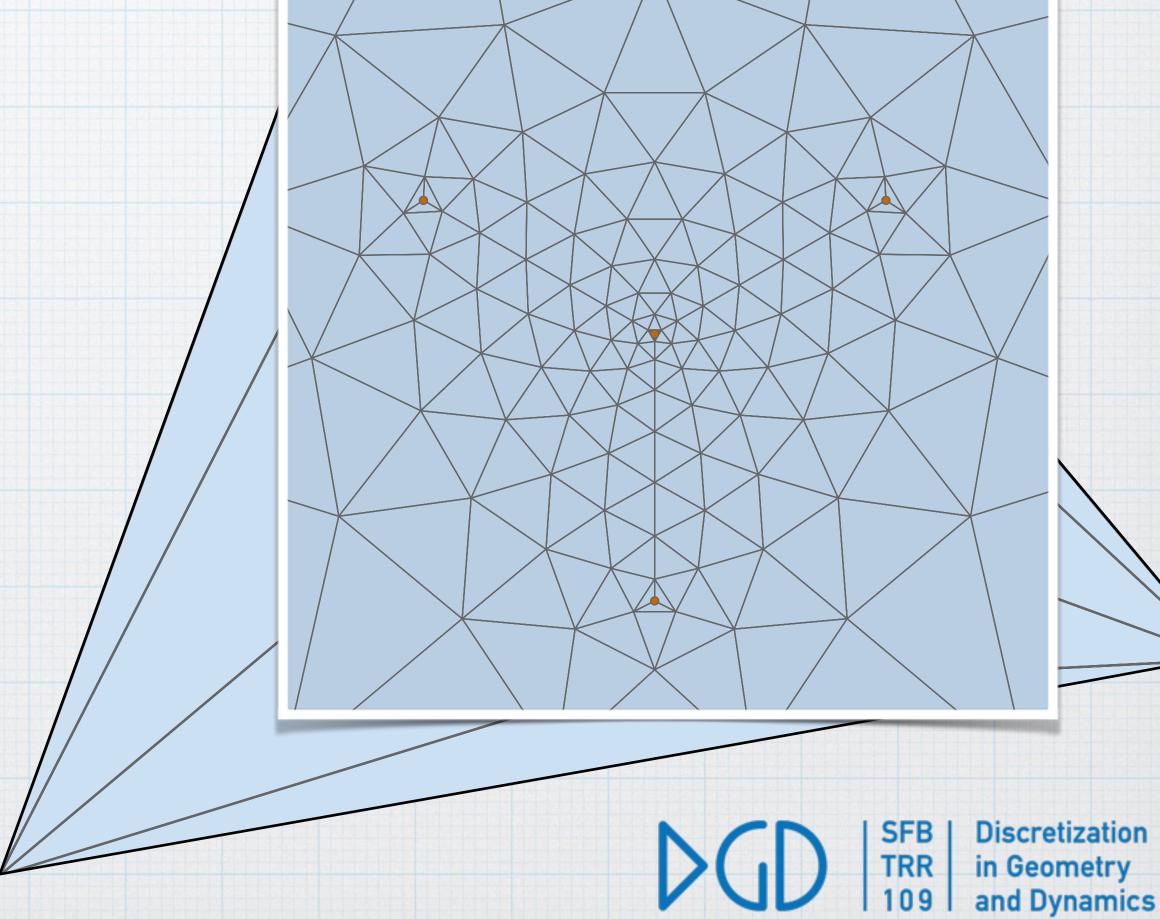


Viscrete Elliptic Functions

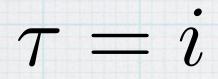
$$\Gamma = \mathbb{Z} + \tau \mathbb{Z}$$

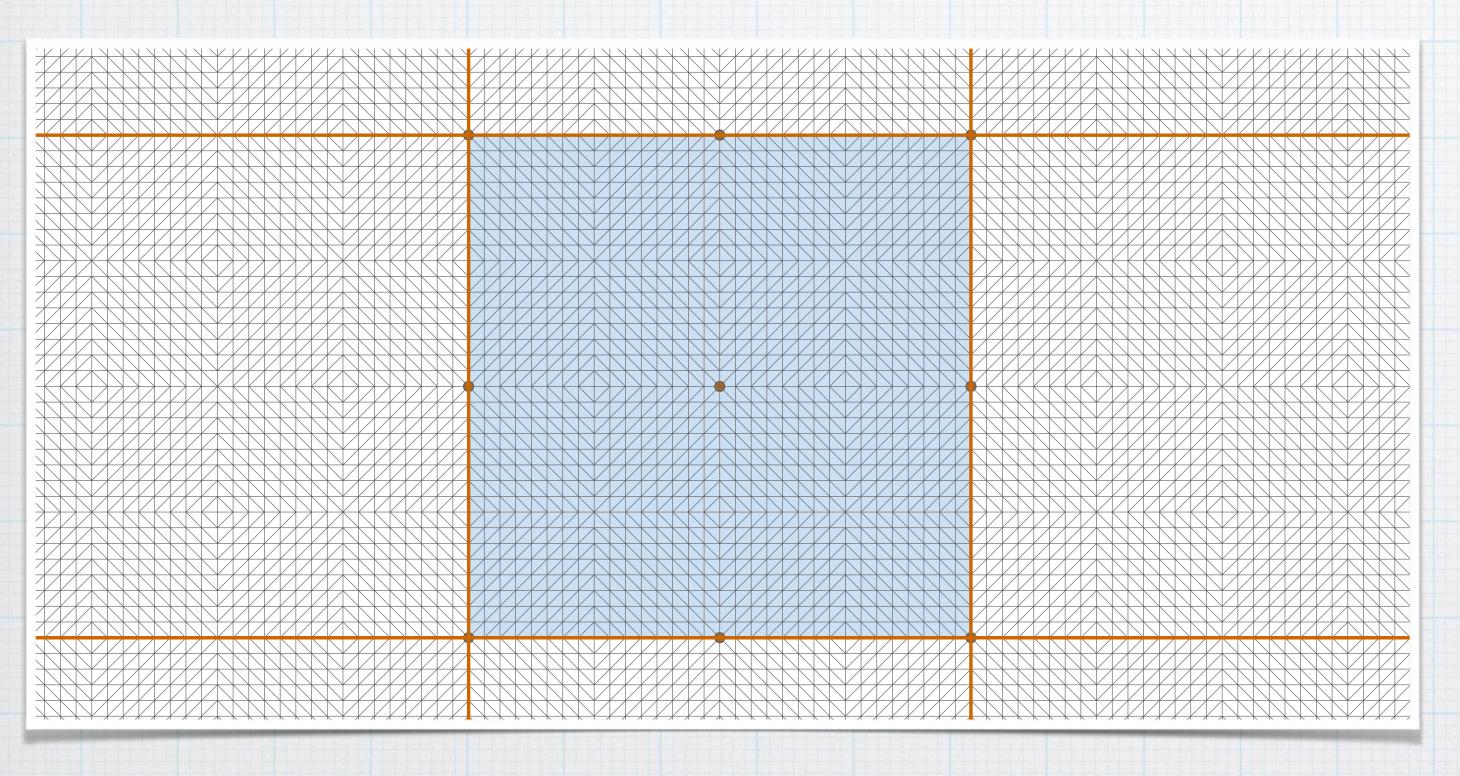
$$\tau = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$

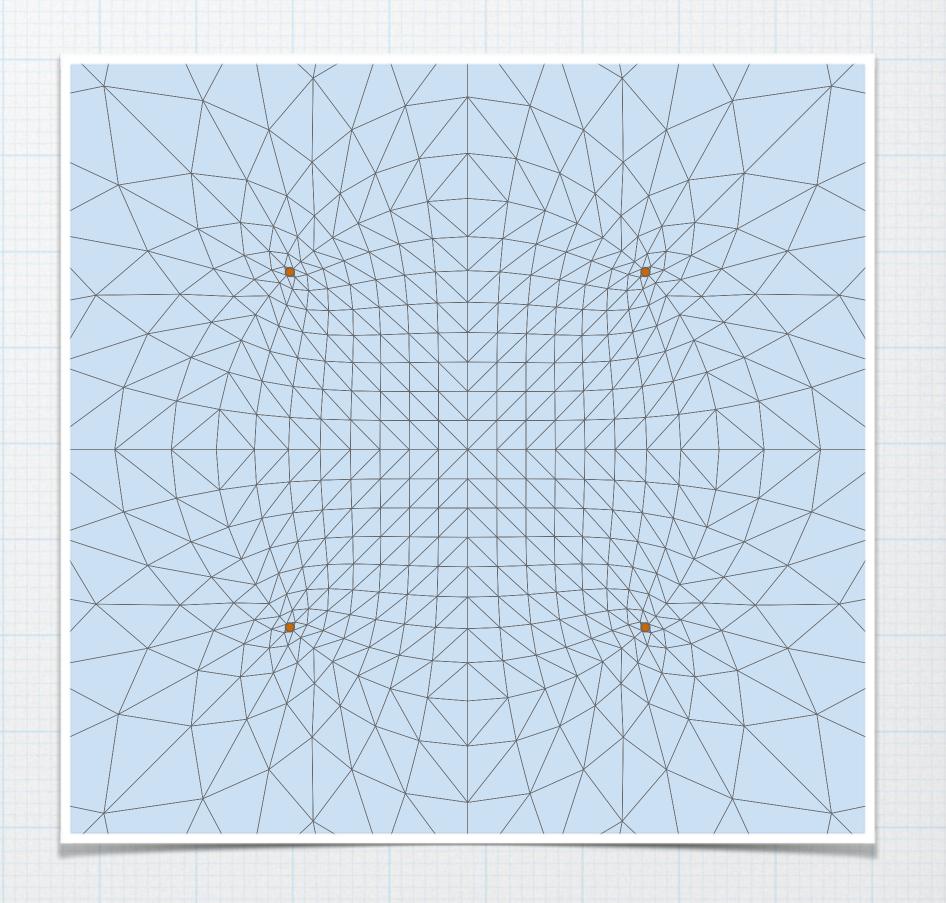




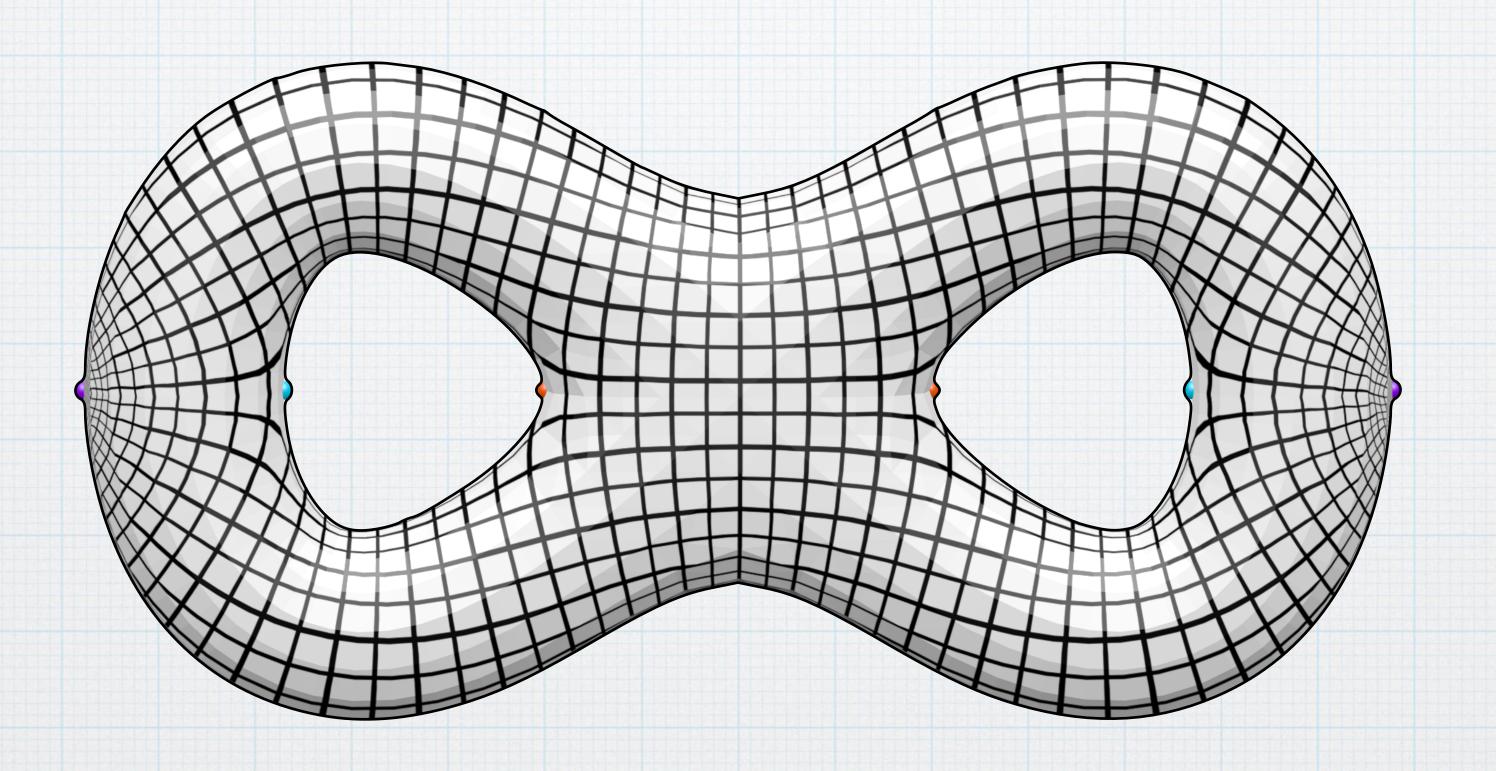
Viscrete Elliptic Functions



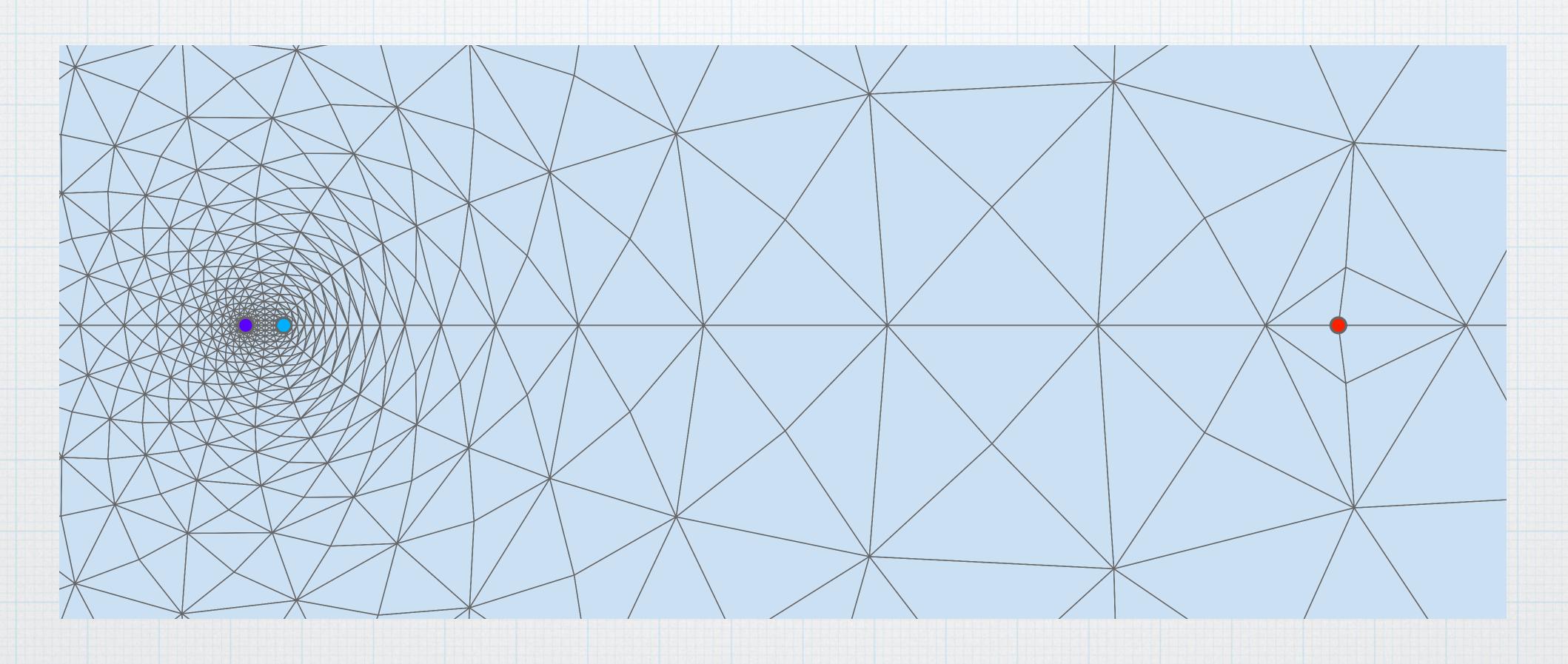




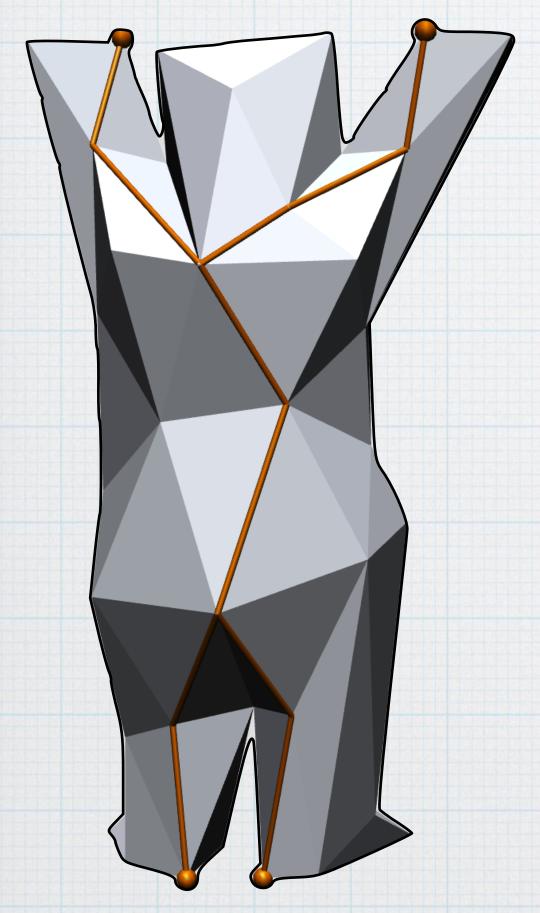
Inverse Mapping

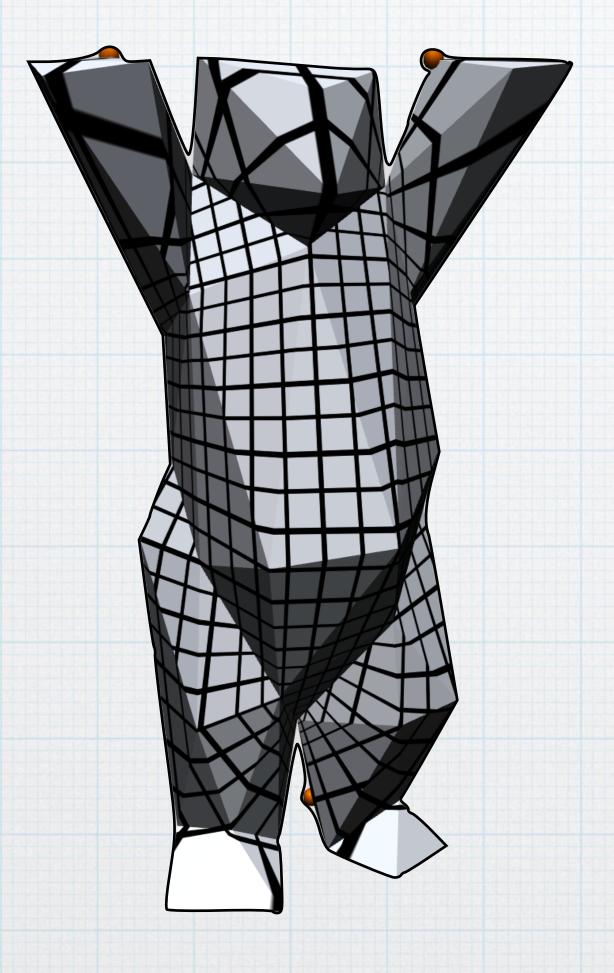


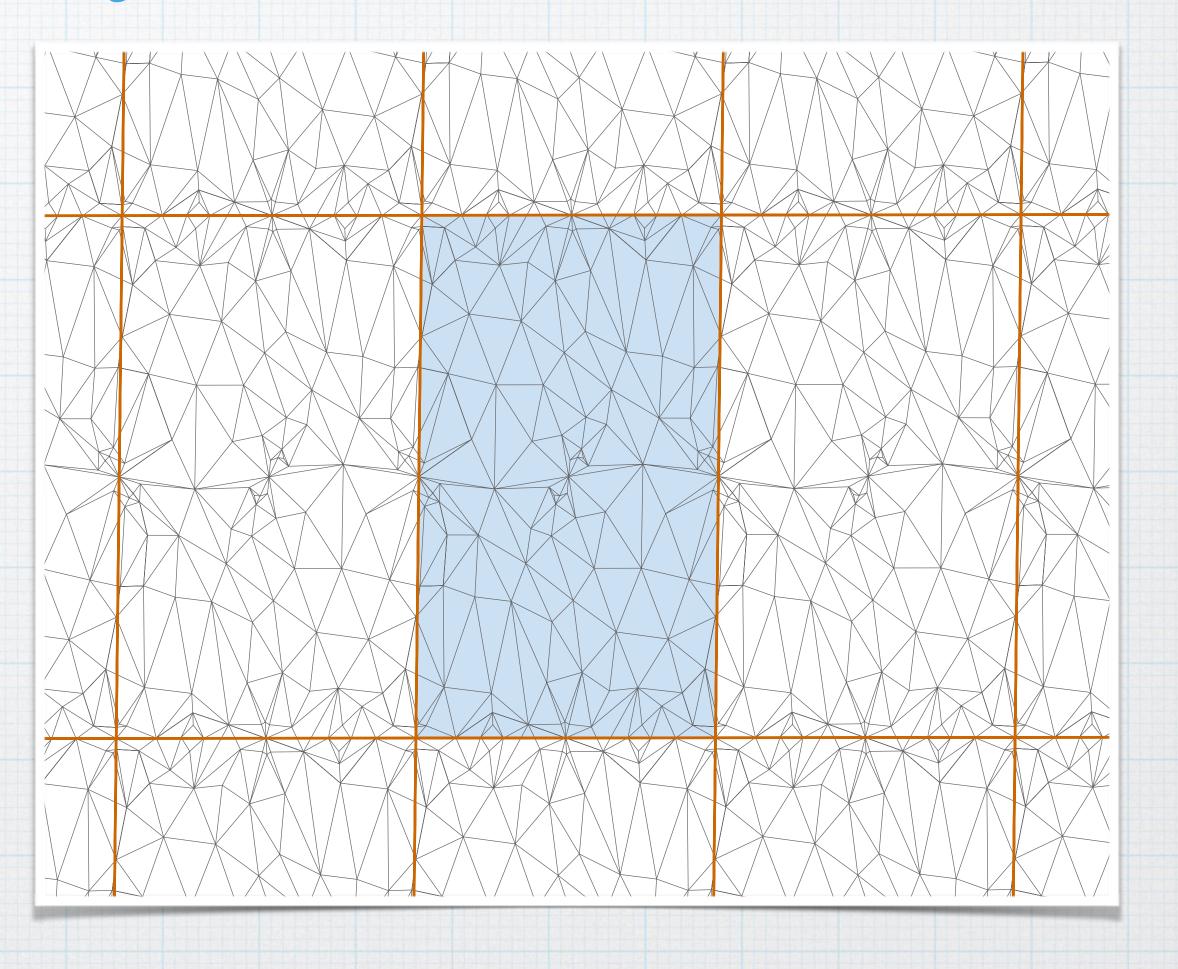
Inverse Mapping



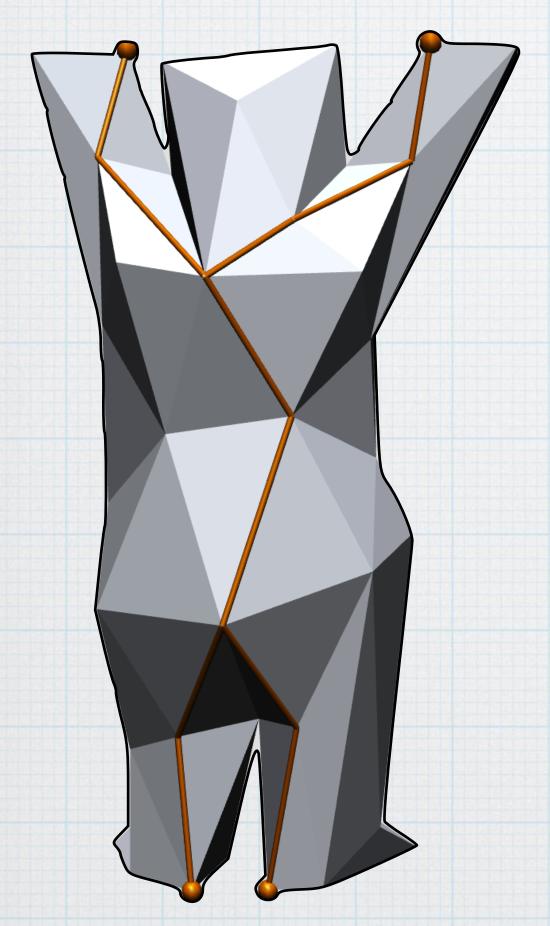
Euclidean Spheres

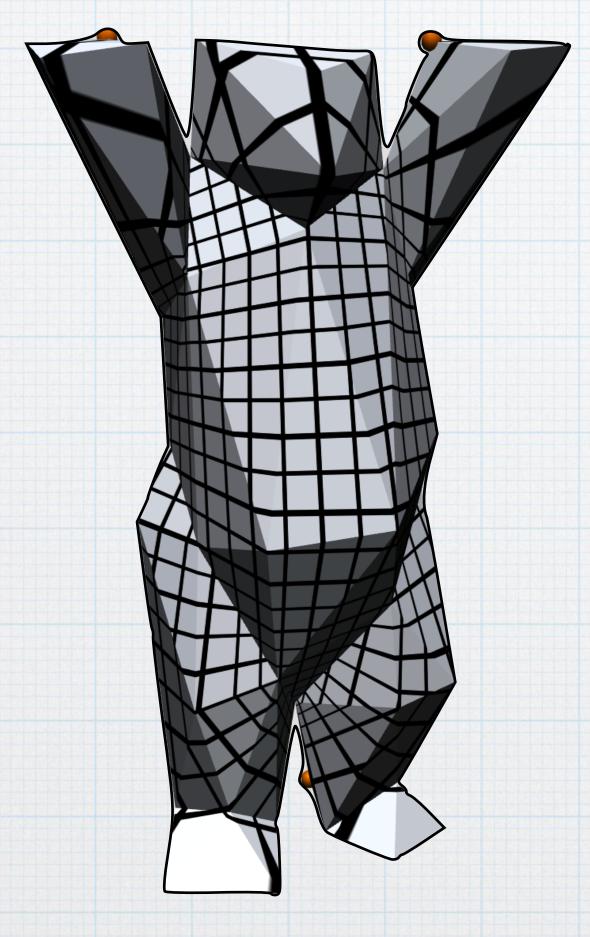


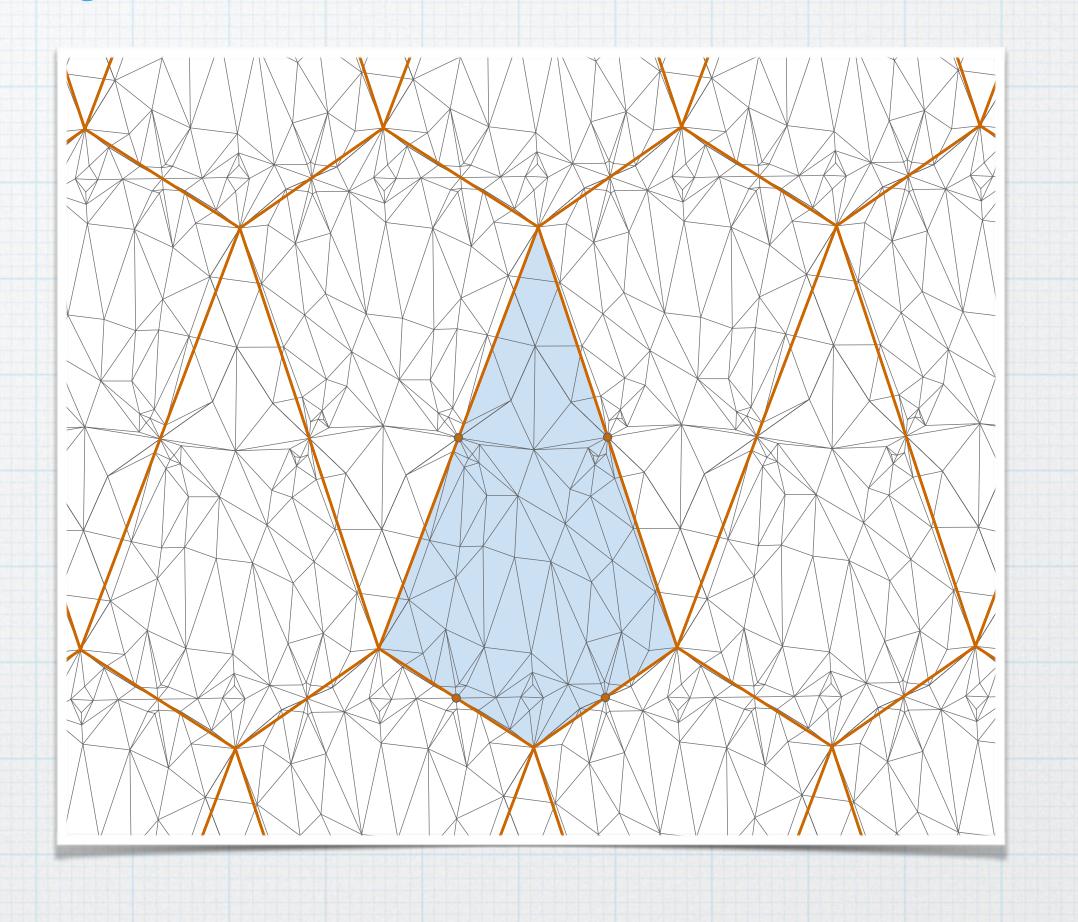


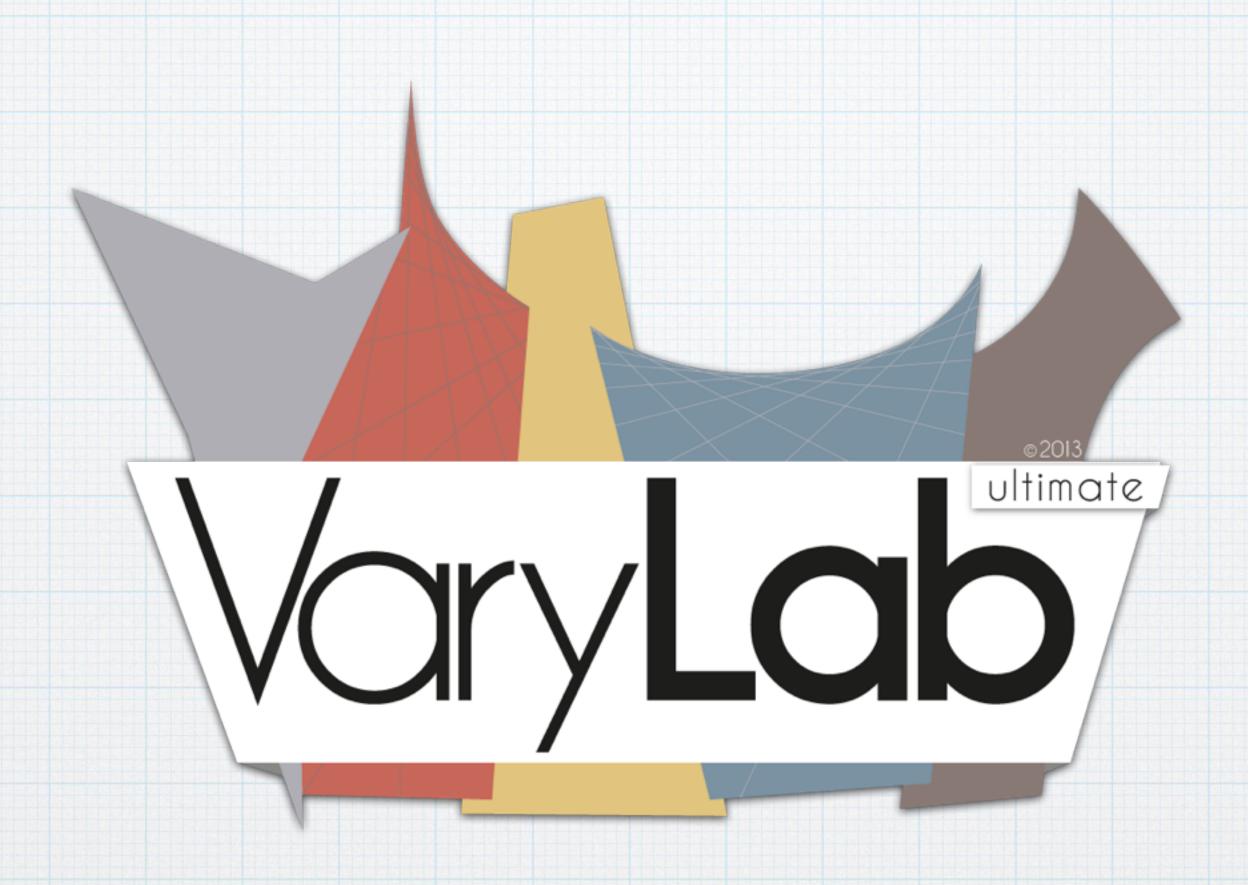


Euclidean Spheres









www.varylab.com

