Variational Methods for Discrete Surface Parameterization. Applications and Implementation

Stefan Sechelmann

25. April 2016

GLIEDERUNG

- Diskret konforme Äquivalenz
- Uniformisierung von elliptischen und hyperelliptischen Kurven
- Eine Anwendungen in der Architektur: Periodische Parametrisierungen
- Software VaryLab

DISKRET KONFORME ÄQUIVALENZ

 $\tilde{\ell}_{ij} = e^{u_i + u_j} \ell_{ij}$

SPHÄRISCH / HYPERBOLISCH

$$\sin\left(\frac{\tilde{\ell}_{ij}}{2}\right) = e^{u_i + u_j} \sin\left(\frac{\ell_{ij}}{2}\right)$$

$$\sinh\left(\frac{\tilde{\ell}_{ij}}{2}\right) = e^{u_i + u_j} \sinh\left(\frac{\ell_{ij}}{2}\right)$$

Abbildungsproblem

Für gegebene Längen ℓ_{ij} finde neue euklidische, hyperbolische oder sphärische Längen $\tilde{\ell}_{ij}$, so dass

$$\tilde{\ell}_{ij} = e^{u_i + u_j} \ell_{ij} \qquad \sin\left(\frac{\tilde{\ell}_{ij}}{2}\right) = e^{u_i + u_j} \ell_{ij} \qquad \sinh\left(\frac{\tilde{\ell}_{ij}}{2}\right) = e^{u_i + u_j} \ell_{ij}$$
$$\sum_{ijk \ni i} \tilde{\alpha}_{jk}^i = \Theta_i$$

Die Formeln für α hängen von der jeweiligen Geometrie ab

VARIATIONSPRINZIP

$$\tilde{\ell}_{ij} = e^{u_i + u_j} \ell_{ij}$$

 $E^{\mathrm{euc}}, E^{\mathrm{hyp}}, E^{\mathrm{sph}} : \mathbb{R}^V \longrightarrow \mathbb{R},$ $u \longmapsto E^{\tilde{g}}(u)$

$$\frac{\partial E^{\tilde{g}}}{\partial u_{i}}(u) = \Theta_{i} - \sum_{ijk \ni i} \tilde{\alpha}^{i}_{jk}$$
$$D^{2}E^{\tilde{g}}(u) = \frac{1}{2} \sum_{ijk \in F} \left(q^{k}_{ij}(u) + q^{i}_{jk}(u) + q^{j}_{ki}(u) \right)$$

Hyperelliptische Kurven

$$\left\{ (\mu, \lambda) \in \mathbb{C}^2 \mid \mu^2 = \prod_{k=1}^{2g+2} (\lambda - \lambda_k) \right\}$$

- Komplex eindimensionale Untermannigfaltigkeit in \mathbb{C}^2
- Konform äquivalent zu einer zweiblättrigen Überlagerung von $\hat{\mathbb{C}}$ mit Verzweigungspunkten $\lambda_1, \ldots, \lambda_{2g+2}$
- Eine Fläche, die als zweiblättrige Überlagerung von $\hat{\mathbb{C}}$ realisiert werden kann, nennt man hyperelliptisch

CHARAKTERISIERUNG

Theorem (Schmutz Schaller 1999). Sei R eine geschlossene hyperbolische Fläche von Geschlecht g. Dann sind die folgenden Aussagen äquivalent:

- (i) R ist hyperelliptisch.
- (ii) Auf R existieren 2g geschlossene geodätische Linien, die sich in genau einem Punkt schneiden.
- (iii) R besitzt ein Fundamentalpolygon mit 4g Seiten, dessen gegenüberliegende Seiten verklebt sind und dessen gegenüberliegende Winkel gleich sind.

Discretization

in Geometry and Dynamics

TRR

DISKRETISIERUNG

BEISPIEL

$$\mu^2 = \prod_{k=1}^6 \left(\lambda - e^{\frac{ik\pi}{3}}\right)$$

Beispiel: Reguläre Fundamentalpolygone

$$\mu^2 = \lambda \prod_{k=1}^{2g} \left(\lambda - e^{\frac{ik\pi}{g}}\right)$$

g = 2

g = 3

g = 4

• Elliptisch-Hyperelliptische Fläche mit Geschlecht 3

ELLIPTISCHE KURVEN $\mu^{2} = \prod_{k=1}^{4} (\lambda - \lambda_{k})$

- Representiere R als zweiblättrige Überlagerung von $\hat{\mathbb{C}}$
- Berechne Modul τ aus der Form des Fundamental
parallelogramms

- Modul τ kann aus $\lambda_1, \ldots, \lambda_4$ berechnet werden
- Verwende dieses τ als Vergleichsgröße zur Untersuchung von Konvergenz

Konvergenz bei Subdivision eines Tetraeders

Konvergenz

 Untersuche die Abhängigkeit der Konvergenz von der Netzqualität

- Keine Konvergenz bei beliebigen Netzen
- Betrachte nur Netze ab einem Schwellwert

Anwendung in der Architektur

Anwendung in der Architektur

- Thilo Rörig, S., Agata Kycia, and Moritz Fleischmann, Surface panelization using periodic conformal maps, Advances in Architectural Geometry 2014
- Kooperation mit HENN Architekten Berlin/München

Surface panelization using periodic conformal maps

Problem:

- Zerlege eine Fassade mit der Topologie eines Kreisrings in reguläre Paneele
- So wenig wie möglich verschiedene Paneele
- Randbedingungen

LÖSUNGSANSATZ

- Reguläre Paneele --- konforme Abbildung
- Randbedingungen --> Kontrolle über Randkrümmung

Geringe Konforme Verzerrung

 Diejenige konforme Abbildung, die den Rand isometrisch abbildet, hat die geringste konforme Verzerrung

PERIODISCHE KONFORME Abbildungen

- Bilde auf einen Kegel mit vorgegebenem (zum Muster passenden) Kegelwinkel ab
- Nicht möglich, Geometrie bestimmt den Kegelwinkel
- Passe den Kegelwinkel unter Veränderung der Randbedingungen an

RANDBEDINGUNGEN

Gerade Randbedingungen → starke konforme
 Verzerrung

Randbedingungen II

- Gauss-Bonnet: $\sum_{i=1}^{n} \kappa_{v_i} + \sum_{j=1}^{m} \kappa_{w_j} = 0$

Optimierung der Paneele

Optimierung der einzelnen Paneele

- Ebenheit
- Regularität
- Quantisierung
- Ausrichtung

Optimierung

Biscrete Surface Optimization

Home

VaryLab is a software developed at Berlin Institute of Technology by members of the geometry group. It is supported by DFG SFB/TR 109 Discretization in Geometry and Dynamics. It is designed to be an extensible and modular tool for experiments with discrete surfaces in pure mathematics and applications in industrial geometry.

/arvLab User Interface

and community area:

p://my.varylab.com

rom this website. Please log in via a Google

nization, we say discrete surface optimization. iven mesh to have minimal energy in a certain

s a combination of energies that are defined on

Featured Post

Seiten

Home
News
Gallery

Forum

Rhino Plug-in MyVaryLab

A new code signing certificate As time goes by... Every couple of years we have to renew out code signing certificate for the Java webstart version of VaryLab. This time h...

	Migeneers Lipcate Jana Safeetine Brandloot
da -	
in state in the rest	ticesn au Jaux Cane of Panel anaxigen.
	B.
Selevenie and	lunges
te Neiswokow erwenist sizmi enulase sattlen	ntel langen namlen beim Auflaus einer internetverbindung verwendet. Java Landnabag die Beizens teinwärd angen des Mittikowsers, Nar erfahrere dense Einstellungen Janken.
	Networksmutht ar pro-
lemposite inter	widdition
na in Branseri	Breislange . 20020.
	Backs Reeds
ews	Honky South
ews	Emir Inch
ews	Vend ab
ews	VaryLab
ws	VaryLab

www.varylab.com

- I. Discrete uniformization of Riemann surfaces
 - I. Quadrangulations
 - 2. Riemann maps
 - 3. Multiply-connected domains
 - 4. Spheres / Tori / Higher Genus
- 2. Applications
 - I. Surface panelization using periodic conformal maps
 - 2. Quasiisothermic mesh layout
 - 3. Optimization of regular and irregular elastic gridshells
- 3. Implementation
 - I. HalfEdge / JRworkspace / ConformalLab / VaryLab

ization metry /namics

